STRINGSTRING
carA carA carB carB purK purK purE purE pyrD pyrD pyrC pyrC purB purB pyrF pyrF purT purT purF purF cvpA cvpA purC purC uraA uraA purM purM purN purN guaA guaA guaB guaB purG purG pyrE pyrE purD purD purH purH purA purA pyrI pyrI pyrB pyrB
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
carACarbamoyl-phosphate synthetase, glutamine-hydrolysing small subunit; Carbamoyl-phosphate synthase small chain. (SW:CARA_SALTY); Belongs to the CarA family. (382 aa)
carBCarbamoyl-phosphate synthase large chain. (SW:CARB_SALTY). (1075 aa)
purKPhosphoribosylaminoimidazole carboxylase = AIR carboxylase, CO(2)-fixing subunit; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). (355 aa)
purEPhosphoribosylaminoimidazole carboxylase = AIR carboxylase, catalytic subunit; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (169 aa)
pyrDDihydro-orotate oxidase; Catalyzes the conversion of dihydroorotate to orotate with quinone as electron acceptor; Belongs to the dihydroorotate dehydrogenase family. Type 2 subfamily. (336 aa)
pyrCDihydro-orotase; Catalyzes the reversible cyclization of carbamoyl aspartate to dihydroorotate. (348 aa)
purBSimilar to E. coli adenylosuccinate lyase (AAC74215.1); Blastp hit to AAC74215.1 (456 aa), 94% identity in aa 1 - 456. (456 aa)
pyrFOrotidine-5'-phosphate decarboxylase; Catalyzes the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP); Belongs to the OMP decarboxylase family. Type 1 subfamily. (245 aa)
purTPhosphoribosylglycinamide formyltransferase 2; Involved in the de novo purine biosynthesis. Catalyzes the transfer of formate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR). Formate is provided by PurU via hydrolysis of 10-formyl-tetrahydrofolate; Belongs to the PurK/PurT family. (392 aa)
purFAmidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family. (505 aa)
cvpASimilar to E. coli membrane protein required for colicin V production (AAC75373.1); Blastp hit to AAC75373.1 (162 aa), 96% identity in aa 1 - 161. (162 aa)
purCSAICAR synthetase; similar to E. coli phosphoribosylaminoimidazole-succinocarboxamide synthetase = SAICAR synthetase (AAC75529.1); Blastp hit to AAC75529.1 (237 aa), 94% identity in aa 1 - 237. (237 aa)
uraANCS2 family uracil transport protein; Similar to E. coli uracil transport (AAC75550.1); Blastp hit to AAC75550.1 (429 aa), 94% identity in aa 1 - 425. (429 aa)
purMAIR synthetase; similar to E. coli phosphoribosylaminoimidazole synthetase = AIR synthetase (AAC75552.1); Blastp hit to AAC75552.1 (345 aa), 91% identity in aa 1 - 345. (345 aa)
purNPolyphosphate kinase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (212 aa)
guaAGMP synthetase; Catalyzes the synthesis of GMP from XMP. (525 aa)
guaBIMP dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (488 aa)
purGPhosphoribosylformylglycinamidine synthetase; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. (1295 aa)
pyrEOrotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP). (213 aa)
purDGAR synthetase; phosphoribosylamine--glycine ligase. (SW:PUR2_SALTY); Belongs to the GARS family. (429 aa)
purHPhosphoribosylaminoimidazolecarboxamide formyltransferase; Bifunctional; bifunctional purine biosynthesis protein PURH. (SW:PUR9_SALTY); IMP cyclohydrolase. (529 aa)
purAAdenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (432 aa)
pyrIAspartate carbamoyltransferase, regulatory subunit; Involved in allosteric regulation of aspartate carbamoyltransferase. (153 aa)
pyrBAspartate carbamoyltransferase catalytic chain. (SW:PYRB_SALTY). (311 aa)
Your Current Organism:
Salmonella enterica Typhimurium
NCBI taxonomy Id: 99287
Other names: S. enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium LT2, Salmonella enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2-LTL2, Salmonella typhimurium LT2
Server load: low (38%) [HD]