STRINGSTRING
yeaA yeaA yhdH yhdH msrP msrP msrQ msrQ bisC bisC msrA msrA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
yeaAHypothetical protein; Putative domain frequently associated with peptide methionine sulfoxide reductase; similar to E. coli orf, hypothetical protein (AAC74848.1); Blastp hit to AAC74848.1 (137 aa), 85% identity in aa 1 - 137. (147 aa)
yhdHSimilar to E. coli putative dehydrogenase (AAC76285.1); Blastp hit to AAC76285.1 (324 aa), 88% identity in aa 1 - 323. (324 aa)
msrPPutative nitrate reductase; Part of the MsrPQ system that repairs oxidized periplasmic proteins containing methionine sulfoxide residues (Met-O), using respiratory chain electrons. Thus protects these proteins from oxidative-stress damage caused by reactive species of oxygen and chlorine generated by the host defense mechanisms. MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation, including the primary periplasmic chaperone SurA and the lipoprotein Pal. The cata [...] (334 aa)
msrQPutative inner membrane protein; Part of the MsrPQ system that repairs oxidized periplasmic proteins containing methionine sulfoxide residues (Met-O), using respiratory chain electrons. Thus protects these proteins from oxidative-stress damage caused by reactive species of oxygen and chlorine generated by the host defense mechanisms. MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation, including the primary periplasmic chaperone SurA and the lipoprotein Pal. Msr [...] (199 aa)
bisCSimilar to E. coli biotin sulfoxide reductase (AAC76575.1); Blastp hit to AAC76575.1 (739 aa), 86% identity in aa 2 - 739; Belongs to the prokaryotic molybdopterin-containing oxidoreductase family. (777 aa)
msrAPeptide methionine sulfoxide reductase; Has an important function as a repair enzyme for proteins that have been inactivated by oxidation. Catalyzes the reversible oxidation-reduction of methionine sulfoxide in proteins to methionine. (212 aa)
Your Current Organism:
Salmonella enterica Typhimurium
NCBI taxonomy Id: 99287
Other names: S. enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium LT2, Salmonella enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2-LTL2, Salmonella typhimurium LT2
Server load: low (16%) [HD]