Your Input: | |||||
polB | DNA polymerase II; 3'->5' exonuclease; similar to E. coli DNA polymerase II (AAC73171.1); Blastp hit to AAC73171.1 (783 aa), 89% identity in aa 1 - 783. (783 aa) | ||||
rnhB | RNAse HII; Endonuclease that specifically degrades the RNA of RNA-DNA hybrids; Belongs to the RNase HII family. (198 aa) | ||||
rnhA | RNase HI; Endonuclease that specifically degrades the RNA of RNA-DNA hybrids. (155 aa) | ||||
dinP | DNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. (351 aa) | ||||
sbcC | ATP-dependent dsDNA exonuclease; SbcCD cleaves DNA hairpin structures. These structures can inhibit DNA replication and are intermediates in certain DNA recombination reactions. The complex acts as a 3'->5' double strand exonuclease that can open hairpins. It also has a 5' single-strand endonuclease activity; Belongs to the SMC family. SbcC subfamily. (1046 aa) | ||||
sbcD | ATP-dependent dsDNA exonuclease; SbcCD cleaves DNA hairpin structures. These structures can inhibit DNA replication and are intermediates in certain DNA recombination reactions. The complex acts as a 3'->5' double strand exonuclease that can open hairpins. It also has a 5' single-strand endonuclease activity; Belongs to the SbcD family. (400 aa) | ||||
xseB | Exonuclease VII, small subunit; Bidirectionally degrades single-stranded DNA into large acid- insoluble oligonucleotides, which are then degraded further into small acid-soluble oligonucleotides; Belongs to the XseB family. (80 aa) | ||||
ybaB | Putative cytoplasmic protein; Binds to DNA and alters its conformation. May be involved in regulation of gene expression, nucleoid organization and DNA protection. (109 aa) | ||||
recR | Putative recombination protein, gap repair; May play a role in DNA repair. It seems to be involved in an RecBC-independent recombinational process of DNA repair. It may act with RecF and RecO. (201 aa) | ||||
uvrB | UvrB with UvrAC is a DNA excision repair enzyme; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA [...] (673 aa) | ||||
mfd | Transcription-repair coupling factor; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily. (1148 aa) | ||||
topB | DNA topoisomerase III; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA su [...] (649 aa) | ||||
xthA | Exonuclease III; Major apurinic-apyrimidinic endonuclease of E.coli. It removes the damaged DNA at cytosines and guanines by cleaving on the 3'-side of the AP site by a beta-elimination reaction. It exhibits 3'- 5'-exonuclease, 3'-phosphomonoesterase, 3'-repair diesterase and ribonuclease H activities (By similarity). (268 aa) | ||||
cho | Putative nuclease subunit of the excinuclease complex; Incises the DNA at the 3' side of a lesion during nucleotide excision repair. Incises the DNA farther away from the lesion than UvrC. Not able to incise the 5' site of a lesion. When a lesion remains because UvrC is not able to induce the 3' incision, Cho incises the DNA. Then UvrC makes the 5' incision. The combined action of Cho and UvrC broadens the substrate range of nucleotide excision repair (By similarity). (302 aa) | ||||
nth | Endonuclease III; DNA repair enzyme that has both DNA N-glycosylase activity and AP-lyase activity. The DNA N-glycosylase activity releases various damaged pyrimidines from DNA by cleaving the N-glycosidic bond, leaving an AP (apurinic/apyrimidinic) site. The AP-lyase activity cleaves the phosphodiester bond 3' to the AP site by a beta-elimination, leaving a 3'-terminal unsaturated sugar and a product with a terminal 5'- phosphate. (211 aa) | ||||
topA | DNA topoisomerase type I, omega protein; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, th [...] (865 aa) | ||||
ruvB | Holliday junction helicase, subunit B; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. (336 aa) | ||||
ruvA | Holliday junction helicase subunit A; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB. (203 aa) | ||||
ruvC | Holliday junction nuclease; Nuclease that resolves Holliday junction intermediates in genetic recombination. Cleaves the cruciform structure in supercoiled DNA by nicking to strands with the same polarity at sites symmetrically opposed at the junction in the homologous arms and leaves a 5'-terminal phosphate and a 3'-terminal hydroxyl group. (173 aa) | ||||
uvrC | UvrC; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5' and 3' sides of the lesion. The N-terminal half is responsible for the 3' incision and the C-terminal half is responsible for the 5' incision. (610 aa) | ||||
umuC | Error-prone repair protein; Involved in UV protection and mutation. Essential for induced (or SOS) mutagenesis. May modify the DNA replication machinery to allow bypass synthesis across a damaged template. (422 aa) | ||||
umuD | Error-prone repair: SOS-response transcriptional repressor; Involved in UV protection and mutation. Essential for induced (or SOS) mutagenesis. May modify the DNA replication machinery to allow bypass synthesis across a damaged template. (139 aa) | ||||
nfo | Endonuclease IV; Endonuclease IV plays a role in DNA repair. It cleaves phosphodiester bonds at apurinic or apyrimidinic (AP) sites, generating a 3'-hydroxyl group and a 5'-terminal sugar phosphate. (285 aa) | ||||
lig | DNA ligase; DNA ligase that catalyzes the formation of phosphodiester linkages between 5'-phosphoryl and 3'-hydroxyl groups in double- stranded DNA using NAD as a coenzyme and as the energy source for the reaction. It is essential for DNA replication and repair of damaged DNA. (671 aa) | ||||
xseA | Exonuclease VII, large subunit; Bidirectionally degrades single-stranded DNA into large acid- insoluble oligonucleotides, which are then degraded further into small acid-soluble oligonucleotides; Belongs to the XseA family. (449 aa) | ||||
recO | Gap repair gene; Involved in DNA repair and RecF pathway recombination; Belongs to the RecO family. (242 aa) | ||||
ung | uracil-DNA-glycosylase; Excises uracil residues from the DNA which can arise as a result of misincorporation of dUMP residues by DNA polymerase or due to deamination of cytosine; Belongs to the uracil-DNA glycosylase (UDG) superfamily. UNG family. (229 aa) | ||||
recN | Protein used in recombination and DNA repair; May be involved in recombinational repair of damaged DNA. (553 aa) | ||||
oraA | Regulator; Modulates RecA activity; Belongs to the RecX family. (166 aa) | ||||
recA | DNA strand exchange and recombination protein; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage. (353 aa) | ||||
mutS | Methyl-directed mismatch repair; This protein is involved in the repair of mismatches in DNA. It is possible that it carries out the mismatch recognition step. This protein has a weak ATPase activity. (855 aa) | ||||
recD | Exonuclease V, alpha chain; A helicase/nuclease that prepares dsDNA breaks (DSB) for recombinational DNA repair. Binds to DSBs and unwinds DNA via a highly rapid and processive ATP-dependent bidirectional helicase activity. Unwinds dsDNA until it encounters a Chi (crossover hotspot instigator) sequence from the 3' direction. Cuts ssDNA a few nucleotides 3' to the Chi site. The properties and activities of the enzyme are changed at Chi. The Chi-altered holoenzyme produces a long 3'-ssDNA overhang and facilitates RecA-binding to the ssDNA for homologous DNA recombination and repair. Holo [...] (611 aa) | ||||
recB | Exonuclease V, beta chain; A helicase/nuclease that prepares dsDNA breaks (DSB) for recombinational DNA repair. Binds to DSBs and unwinds DNA via a highly rapid and processive ATP-dependent bidirectional helicase activity. Unwinds dsDNA until it encounters a Chi (crossover hotspot instigator) sequence from the 3' direction. Cuts ssDNA a few nucleotides 3' to the Chi site. The properties and activities of the enzyme are changed at Chi. The Chi-altered holoenzyme produces a long 3'-ssDNA overhang and facilitates RecA-binding to the ssDNA for homologous DNA recombination and repair. Holoe [...] (1181 aa) | ||||
ptr | Protease III; Endopeptidase that degrades small peptides of less than 7 kDa, such as glucagon and insulin. (962 aa) | ||||
recC | Exonuclease V, subunit; A helicase/nuclease that prepares dsDNA breaks (DSB) for recombinational DNA repair. Binds to DSBs and unwinds DNA via a highly rapid and processive ATP-dependent bidirectional helicase activity. Unwinds dsDNA until it encounters a Chi (crossover hotspot instigator) sequence from the 3' direction. Cuts ssDNA a few nucleotides 3' to the Chi site. The properties and activities of the enzyme are changed at Chi. The Chi-altered holoenzyme produces a long 3'-ssDNA overhang and facilitates RecA-binding to the ssDNA for homologous DNA recombination and repair. Holoenzy [...] (1123 aa) | ||||
recJ | ssDNA exonuclease; Single-stranded-DNA-specific exonuclease. Required for many types of recombinational events, although the stringency of the requirement for RecJ appears to vary with the type of recombinational event monitored and the other recombination gene products which are available. (577 aa) | ||||
mutM | Formamidopyrimidine DNA glycosylase; Involved in base excision repair of DNA damaged by oxidation or by mutagenic agents. Acts as DNA glycosylase that recognizes and removes damaged bases. Has a preference for oxidized purines, such as 7,8-dihydro-8-oxoguanine (8-oxoG). Has AP (apurinic/apyrimidinic) lyase activity and introduces nicks in the DNA strand. Cleaves the DNA backbone by beta-delta elimination to generate a single-strand break at the site of the removed base with both 3'- and 5'-phosphates (By similarity). (269 aa) | ||||
yicF | Putative DNA ligase; Catalyzes the formation of phosphodiester linkages between 5'-phosphoryl and 3'-hydroxyl groups in double-stranded DNA using NAD as a coenzyme and as the energy source for the reaction. Belongs to the NAD-dependent DNA ligase family. LigB subfamily. (561 aa) | ||||
rep | Rep helicase; Rep helicase is a single-stranded DNA-dependent ATPase involved in DNA replication; it can initiate unwinding at a nick in the DNA. It binds to the single-stranded DNA and acts in a progressive fashion along the DNA in the 3' to 5' direction. (674 aa) | ||||
xerC | Putative site-specific integrase/recombinase; Site-specific tyrosine recombinase, which acts by catalyzing the cutting and rejoining of the recombining DNA molecules. Binds cooperatively to specific DNA consensus sequences that are separated from XerD binding sites by a short central region, forming the heterotetrameric XerC-XerD complex that recombines DNA substrates. The complex is essential to convert dimers of the bacterial chromosome into monomers to permit their segregation at cell division. It also contributes to the segregational stability of plasmids. In the complex XerC speci [...] (300 aa) | ||||
uvrD | DNA-dependent ATPase I and helicase II; Has both ATPase and helicase activities. Unwinds DNA duplexes with 3' to 5' polarity with respect to the bound strand and initiates unwinding most effectively when a single-stranded region is present. Involved in the post-incision events of nucleotide excision repair and methyl-directed mismatch repair; Belongs to the helicase family. UvrD subfamily. (720 aa) | ||||
recQ | ATP-dependent DNA helicase; Involved in the RecF recombination pathway; its gene expression is under the regulation of the SOS system. It is a DNA helicase; Belongs to the helicase family. RecQ subfamily. (615 aa) | ||||
polA | DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 3'-5' and 5'-3' exonuclease activity. It is able to utilize nicked circular duplex DNA as a template and can unwind the parental DNA strand from its template. (928 aa) | ||||
lexA | SOS response regulator; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. Binds to the 16 bp palindromic sequence 5'-CTGTATATATATACAG-3'. In the presence of single- stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. (202 aa) | ||||
uvrA | DNA excision repair enzyme; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate; Belongs to the ABC transporter superfamily. UvrA family. (941 aa) | ||||
ssb | ssDNA-binding protein; Plays an important role in DNA replication, recombination and repair. Binds to ssDNA and to an array of partner proteins to recruit them to their sites of action during DNA metabolism. (176 aa) | ||||
mutL | Enzyme in methyl-directed mismatch repair; This protein is involved in the repair of mismatches in DNA. It is required for dam-dependent methyl-directed DNA mismatch repair. May act as a 'molecular matchmaker', a protein that promotes the formation of a stable complex between two or more DNA-binding proteins in an ATP-dependent manner without itself being part of a final effector complex. (618 aa) | ||||
radA | Putative ATP-dependent protease; DNA-dependent ATPase involved in processing of recombination intermediates, plays a role in repairing DNA breaks. Stimulates the branch migration of RecA-mediated strand transfer reactions, allowing the 3' invading strand to extend heteroduplex DNA faster. Binds ssDNA in the presence of ADP but not other nucleotides, has ATPase activity that is stimulated by ssDNA and various branched DNA structures, but inhibited by SSB. Does not have RecA's homology-searching function. Belongs to the RecA family. RadA subfamily. (460 aa) |