STRINGSTRING
atpF atpF atpE atpE atpB atpB gppA gppA cyaA cyaA udp udp coaA coaA purD purD purH purH acs acs purA purA pyrB pyrB atpA atpA atpG atpG purE purE pyrD pyrD pyrC pyrC purB purB ssaN ssaN nifJ nifJ pyrF pyrF purU purU purT purT fliI fliI amn amn atpD atpD atpC atpC spoT spoT pyrE pyrE dfp dfp kdtB kdtB accC accC pyrG pyrG invC invC purG purG ndk ndk guaB guaB udk udk ackA ackA atpH atpH pta pta purF purF accD accD purC purC upp upp purM purM purN purN guaA guaA ribF ribF carA carA carB carB yacE yacE aceF aceF pyrH pyrH hpt hpt accA accA gpt gpt apt apt adk adk purK purK
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
atpFMembrane-bound ATP synthase, F0 sector, subunit b; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (156 aa)
atpEMembrane-bound ATP synthase, F0 sector, subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (79 aa)
atpBMembrane-bound ATP synthase, F0 sector, subunit a; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (271 aa)
gppAGuanosine pentaphosphatase; Catalyzes the conversion of pppGpp to ppGpp. Guanosine pentaphosphate (pppGpp) is a cytoplasmic signaling molecule which together with ppGpp controls the 'stringent response', an adaptive process that allows bacteria to respond to amino acid starvation, resulting in the coordinated regulation of numerous cellular activities. (493 aa)
cyaAAdenylate cyclase. (SW:CYAA_SALTY). (848 aa)
udpUridine phosphorylase; Catalyzes the reversible phosphorylytic cleavage of uridine and deoxyuridine to uracil and ribose- or deoxyribose-1-phosphate. The produced molecules are then utilized as carbon and energy sources or in the rescue of pyrimidine bases for nucleotide synthesis (By similarity). (253 aa)
coaAPantothenate kinase. (SW:COAA_SALTY). (316 aa)
purDGAR synthetase; phosphoribosylamine--glycine ligase. (SW:PUR2_SALTY); Belongs to the GARS family. (429 aa)
purHPhosphoribosylaminoimidazolecarboxamide formyltransferase; Bifunctional; bifunctional purine biosynthesis protein PURH. (SW:PUR9_SALTY); IMP cyclohydrolase. (529 aa)
acsacetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. Acs undergoes a two-step reaction. In the first half reaction, Acs combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA. (652 aa)
purAAdenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (432 aa)
pyrBAspartate carbamoyltransferase catalytic chain. (SW:PYRB_SALTY). (311 aa)
atpAMembrane-bound ATP synthase, F1 sector, alpha-subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (513 aa)
atpGMembrane-bound ATP synthase, F1 sector, gamma-subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (287 aa)
purEPhosphoribosylaminoimidazole carboxylase = AIR carboxylase, catalytic subunit; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (169 aa)
pyrDDihydro-orotate oxidase; Catalyzes the conversion of dihydroorotate to orotate with quinone as electron acceptor; Belongs to the dihydroorotate dehydrogenase family. Type 2 subfamily. (336 aa)
pyrCDihydro-orotase; Catalyzes the reversible cyclization of carbamoyl aspartate to dihydroorotate. (348 aa)
purBSimilar to E. coli adenylosuccinate lyase (AAC74215.1); Blastp hit to AAC74215.1 (456 aa), 94% identity in aa 1 - 456. (456 aa)
ssaNHomology with the YscN family of proteins; probable secretion system apparatus ATP synthase SSAN. (SW:SSAN_SALTY); Belongs to the ATPase alpha/beta chains family. (433 aa)
nifJSimilar to E. coli putative oxidoreductase, Fe-S subunit (AAC74460.1); Blastp hit to AAC74460.1 (1174 aa), 92% identity in aa 1 - 1174. (1174 aa)
pyrFOrotidine-5'-phosphate decarboxylase; Catalyzes the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP); Belongs to the OMP decarboxylase family. Type 1 subfamily. (245 aa)
purUFormyltetrahydrofolate hydrolase; Catalyzes the hydrolysis of 10-formyltetrahydrofolate (formyl-FH4) to formate and tetrahydrofolate (FH4). (280 aa)
purTPhosphoribosylglycinamide formyltransferase 2; Involved in the de novo purine biosynthesis. Catalyzes the transfer of formate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR). Formate is provided by PurU via hydrolysis of 10-formyl-tetrahydrofolate; Belongs to the PurK/PurT family. (392 aa)
fliIFlagellum-specific ATP synthase; Probable catalytic subunit of a protein translocase for flagellum-specific export, or a proton translocase involved in local circuits at the flagellum. May be involved in a specialized protein export pathway that proceeds without signal peptide cleavage; Belongs to the ATPase alpha/beta chains family. (456 aa)
amnAMP nucleosidase; Catalyzes the hydrolysis of the N-glycosidic bond of AMP to form adenine and ribose 5-phosphate. Involved in regulation of AMP concentrations. (484 aa)
atpDMembrane-bound ATP synthase, F1 sector, beta-subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (460 aa)
atpCMembrane-bound ATP synthase, F1 sector, epsilon-subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. (139 aa)
spoT(p)ppGpp synthetase II; In eubacteria ppGpp (guanosine 3'-diphosphate 5-' diphosphate) is a mediator of the stringent response that coordinates a variety of cellular activities in response to changes in nutritional abundance. (703 aa)
pyrEOrotate phosphoribosyltransferase; Catalyzes the transfer of a ribosyl phosphate group from 5- phosphoribose 1-diphosphate to orotate, leading to the formation of orotidine monophosphate (OMP). (213 aa)
dfpFlavoprotein; Catalyzes two steps in the biosynthesis of coenzyme A. In the first step cysteine is conjugated to 4'-phosphopantothenate to form 4- phosphopantothenoylcysteine, in the latter compound is decarboxylated to form 4'-phosphopantotheine; In the C-terminal section; belongs to the PPC synthetase family. (407 aa)
kdtBPhosphopantetheine adenylyltransferase; Reversibly transfers an adenylyl group from ATP to 4'- phosphopantetheine, yielding dephospho-CoA (dPCoA) and pyrophosphate. Belongs to the bacterial CoaD family. (159 aa)
accCAcetyl CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA. (449 aa)
pyrGCTP synthetase; Catalyzes the ATP-dependent amination of UTP to CTP with either L-glutamine or ammonia as the source of nitrogen. Regulates intracellular CTP levels through interactions with the four ribonucleotide triphosphates. (545 aa)
invCSurface presentation of antigens; Necessary for efficient entry of S.typhimurium into cultured epithelial cells. Probable catalytic subunit of a protein translocase. May energize the protein export apparatus encoded in the inv locus which is required for the surface presentation of determinants needed for the entry of salmonella species into mammalian cells. (431 aa)
purGPhosphoribosylformylglycinamidine synthetase; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. (1295 aa)
ndkNucleoside diphosphate kinase; Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate; Belongs to the NDK family. (143 aa)
guaBIMP dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family. (488 aa)
udkSimilar to E. coli uridine/cytidine kinase (AAC75127.1); Blastp hit to AAC75127.1 (231 aa), 95% identity in aa 19 - 231. (213 aa)
ackAAcetate kinase A; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. Has broad substrate specificity and can also utilize GTP, UTP and CTP. Can also phosphorylate propionate, but has very low activity with formate and is inactive with butyrate; Belongs to the acetokinase family. (400 aa)
atpHMembrane-bound ATP synthase, F1 sector, delta-subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation; Belongs to the ATPase delta chain family. (177 aa)
ptaPhosphotransacetylase; Involved in acetate metabolism. Catalyzes the reversible interconversion of acetyl-CoA and acetyl phosphate. The direction of the overall reaction changes depending on growth conditions. Required for acetate recapture but not for acetate excretion when this organism is grown on ethanolamine; In the N-terminal section; belongs to the CobB/CobQ family. (714 aa)
purFAmidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family. (505 aa)
accDacetylCoA carboxylase, beta subunit; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family. (304 aa)
purCSAICAR synthetase; similar to E. coli phosphoribosylaminoimidazole-succinocarboxamide synthetase = SAICAR synthetase (AAC75529.1); Blastp hit to AAC75529.1 (237 aa), 94% identity in aa 1 - 237. (237 aa)
uppUracil phosphoribosyltransferase; Catalyzes the conversion of uracil and 5-phospho-alpha-D- ribose 1-diphosphate (PRPP) to UMP and diphosphate. (208 aa)
purMAIR synthetase; similar to E. coli phosphoribosylaminoimidazole synthetase = AIR synthetase (AAC75552.1); Blastp hit to AAC75552.1 (345 aa), 91% identity in aa 1 - 345. (345 aa)
purNPolyphosphate kinase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate. (212 aa)
guaAGMP synthetase; Catalyzes the synthesis of GMP from XMP. (525 aa)
ribFFlavokinase and FAD synthetase; Similar to E. coli putative regulator (AAC73136.1); Blastp hit to AAC73136.1 (313 aa), 89% identity in aa 1 - 309; Belongs to the ribF family. (312 aa)
carACarbamoyl-phosphate synthetase, glutamine-hydrolysing small subunit; Carbamoyl-phosphate synthase small chain. (SW:CARA_SALTY); Belongs to the CarA family. (382 aa)
carBCarbamoyl-phosphate synthase large chain. (SW:CARB_SALTY). (1075 aa)
yacEPutative nucleotide kinase; Catalyzes the phosphorylation of the 3'-hydroxyl group of dephosphocoenzyme A to form coenzyme A; Belongs to the CoaE family. (206 aa)
aceFPyruvate dehydrogenase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (629 aa)
pyrHUridylate kinase; Catalyzes the reversible phosphorylation of UMP to UDP. (241 aa)
hptHypoxanthine phosphoribosyltransferase; Acts preferentially on hypoxanthine; has very low activity towards guanine. Inactive towards xanthine (By similarity). Belongs to the purine/pyrimidine phosphoribosyltransferase family. (178 aa)
accAacetylCoA carboxylase, carboxytransferase component, alpha subunit; Component of the acetyl coenzyme A carboxylase (ACC) complex. First, biotin carboxylase catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the carboxyltransferase to acetyl-CoA to form malonyl-CoA. (319 aa)
gptGuanine-hypoxanthine phosphoribosyltransferase; Acts on guanine, xanthine and to a lesser extent hypoxanthine; Belongs to the purine/pyrimidine phosphoribosyltransferase family. XGPT subfamily. (152 aa)
aptAdenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis. (183 aa)
adkAdenylate kinase; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family. (214 aa)
purKPhosphoribosylaminoimidazole carboxylase = AIR carboxylase, CO(2)-fixing subunit; Catalyzes the ATP-dependent conversion of 5-aminoimidazole ribonucleotide (AIR) and HCO(3)(-) to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR). (355 aa)
Your Current Organism:
Salmonella enterica Typhimurium
NCBI taxonomy Id: 99287
Other names: S. enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium LT2, Salmonella enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2-LTL2, Salmonella typhimurium LT2
Server load: low (18%) [HD]