node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
cbpA | dnaK | STM1112 | STM0012 | Curved DNA-binding protein; DNA-binding protein that preferentially recognizes a curved DNA sequence. It is probably a functional analog of DnaJ; displays overlapping activities with DnaJ, but functions under different conditions, probably acting as a molecular chaperone in an adaptive response to environmental stresses other than heat shock. Lacks autonomous chaperone activity; binds native substrates and targets them for recognition by DnaK. Its activity is inhibited by the binding of CbpM. | Chaperone Hsp70; Acts as a chaperone. | 0.963 |
cbpA | grpE | STM1112 | STM2681 | Curved DNA-binding protein; DNA-binding protein that preferentially recognizes a curved DNA sequence. It is probably a functional analog of DnaJ; displays overlapping activities with DnaJ, but functions under different conditions, probably acting as a molecular chaperone in an adaptive response to environmental stresses other than heat shock. Lacks autonomous chaperone activity; binds native substrates and targets them for recognition by DnaK. Its activity is inhibited by the binding of CbpM. | Molecular chaparone; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-depe [...] | 0.887 |
cbpA | hdeB | STM1112 | STM1562 | Curved DNA-binding protein; DNA-binding protein that preferentially recognizes a curved DNA sequence. It is probably a functional analog of DnaJ; displays overlapping activities with DnaJ, but functions under different conditions, probably acting as a molecular chaperone in an adaptive response to environmental stresses other than heat shock. Lacks autonomous chaperone activity; binds native substrates and targets them for recognition by DnaK. Its activity is inhibited by the binding of CbpM. | Putative periplasmic transport protein; Required for optimal acid stress protection, which is important for survival of enteric bacteria in the acidic environment of the host stomach. Exhibits a chaperone-like activity at acidic pH by preventing the aggregation of many different periplasmic proteins. Belongs to the HdeB family. | 0.417 |
cbpA | hscA | STM1112 | STM2539 | Curved DNA-binding protein; DNA-binding protein that preferentially recognizes a curved DNA sequence. It is probably a functional analog of DnaJ; displays overlapping activities with DnaJ, but functions under different conditions, probably acting as a molecular chaperone in an adaptive response to environmental stresses other than heat shock. Lacks autonomous chaperone activity; binds native substrates and targets them for recognition by DnaK. Its activity is inhibited by the binding of CbpM. | Chaperone protein; Chaperone involved in the maturation of iron-sulfur cluster- containing proteins. Has a low intrinsic ATPase activity which is markedly stimulated by HscB. Involved in the maturation of IscU. | 0.882 |
cbpA | htpG | STM1112 | STM0487 | Curved DNA-binding protein; DNA-binding protein that preferentially recognizes a curved DNA sequence. It is probably a functional analog of DnaJ; displays overlapping activities with DnaJ, but functions under different conditions, probably acting as a molecular chaperone in an adaptive response to environmental stresses other than heat shock. Lacks autonomous chaperone activity; binds native substrates and targets them for recognition by DnaK. Its activity is inhibited by the binding of CbpM. | Chaperone Hsp90, heat shock protein C 62.5; Molecular chaperone. Has ATPase activity. | 0.862 |
cbpA | mopA | STM1112 | STM4330 | Curved DNA-binding protein; DNA-binding protein that preferentially recognizes a curved DNA sequence. It is probably a functional analog of DnaJ; displays overlapping activities with DnaJ, but functions under different conditions, probably acting as a molecular chaperone in an adaptive response to environmental stresses other than heat shock. Lacks autonomous chaperone activity; binds native substrates and targets them for recognition by DnaK. Its activity is inhibited by the binding of CbpM. | Chaperone Hsp60 with peptide-dependent ATPase activity; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.857 |
cbpA | mopB | STM1112 | STM4329 | Curved DNA-binding protein; DNA-binding protein that preferentially recognizes a curved DNA sequence. It is probably a functional analog of DnaJ; displays overlapping activities with DnaJ, but functions under different conditions, probably acting as a molecular chaperone in an adaptive response to environmental stresses other than heat shock. Lacks autonomous chaperone activity; binds native substrates and targets them for recognition by DnaK. Its activity is inhibited by the binding of CbpM. | Chaperone Hsp10; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. | 0.678 |
cbpA | yrfI | STM1112 | STM3498 | Curved DNA-binding protein; DNA-binding protein that preferentially recognizes a curved DNA sequence. It is probably a functional analog of DnaJ; displays overlapping activities with DnaJ, but functions under different conditions, probably acting as a molecular chaperone in an adaptive response to environmental stresses other than heat shock. Lacks autonomous chaperone activity; binds native substrates and targets them for recognition by DnaK. Its activity is inhibited by the binding of CbpM. | Heat shock protein 33; Redox regulated molecular chaperone. Protects both thermally unfolding and oxidatively damaged proteins from irreversible aggregation. Plays an important role in the bacterial defense system toward oxidative stress. | 0.425 |
clpX | dnaJ | STM0449 | STM0013 | Specificity component of clpA-clpP ATP-dependent serine protease, chaperone; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP. | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.584 |
clpX | dnaK | STM0449 | STM0012 | Specificity component of clpA-clpP ATP-dependent serine protease, chaperone; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP. | Chaperone Hsp70; Acts as a chaperone. | 0.857 |
clpX | grpE | STM0449 | STM2681 | Specificity component of clpA-clpP ATP-dependent serine protease, chaperone; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP. | Molecular chaparone; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-depe [...] | 0.820 |
clpX | htpG | STM0449 | STM0487 | Specificity component of clpA-clpP ATP-dependent serine protease, chaperone; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP. | Chaperone Hsp90, heat shock protein C 62.5; Molecular chaperone. Has ATPase activity. | 0.670 |
clpX | mopA | STM0449 | STM4330 | Specificity component of clpA-clpP ATP-dependent serine protease, chaperone; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP. | Chaperone Hsp60 with peptide-dependent ATPase activity; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.884 |
clpX | mopB | STM0449 | STM4329 | Specificity component of clpA-clpP ATP-dependent serine protease, chaperone; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP. | Chaperone Hsp10; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. | 0.805 |
clpX | yrfI | STM0449 | STM3498 | Specificity component of clpA-clpP ATP-dependent serine protease, chaperone; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP. | Heat shock protein 33; Redox regulated molecular chaperone. Protects both thermally unfolding and oxidatively damaged proteins from irreversible aggregation. Plays an important role in the bacterial defense system toward oxidative stress. | 0.510 |
dnaJ | clpX | STM0013 | STM0449 | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Specificity component of clpA-clpP ATP-dependent serine protease, chaperone; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP. | 0.584 |
dnaJ | dnaK | STM0013 | STM0012 | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Chaperone Hsp70; Acts as a chaperone. | 0.999 |
dnaJ | grpE | STM0013 | STM2681 | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Molecular chaparone; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-depe [...] | 0.998 |
dnaJ | hscA | STM0013 | STM2539 | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Chaperone protein; Chaperone involved in the maturation of iron-sulfur cluster- containing proteins. Has a low intrinsic ATPase activity which is markedly stimulated by HscB. Involved in the maturation of IscU. | 0.967 |
dnaJ | htpG | STM0013 | STM0487 | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Chaperone Hsp90, heat shock protein C 62.5; Molecular chaperone. Has ATPase activity. | 0.989 |