STRINGSTRING
thiF thiF nadR nadR glgC glgC cysD cysD cysN cysN cysC cysC moeB moeB moaD moaD STMF1.36 STMF1.36
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
thiFThiamin biosynthesis protein, thiazole moiety; Catalyzes the adenylation of thisS as part of thiazole synthesis; with ThiI it catalyses the transfer of sulfur from cysteine to the ThiS enzyme; similar to E. coli thiamin biosynthesis, thiazole moiety (AAC76966.1); Blastp hit to AAC76966.1 (245 aa), 84% identity in aa 1 - 245. (252 aa)
nadRTrifunctional protein; This enzyme has three activities: DNA binding, nicotinamide mononucleotide (NMN) adenylyltransferase and ribosylnicotinamide (RN) kinase. The DNA-binding domain binds to the nadB operator sequence in an NAD- and ATP-dependent manner. As NAD levels increase within the cell, the affinity of NadR for the nadB operator regions of nadA, nadB, and pncB increases, repressing the transcription of these genes. The RN kinase activity catalyzes the phosphorylation of RN to form nicotinamide ribonucleotide. The NMN adenylyltransferase activity catalyzes the transfer of the A [...] (410 aa)
glgCGlucose-1-phosphate adenylyltransferase; Involved in the biosynthesis of ADP-glucose, a building block required for the elongation reactions to produce glycogen. Catalyzes the reaction between ATP and alpha-D-glucose 1-phosphate (G1P) to produce pyrophosphate and ADP-Glc. (431 aa)
cysDATP-sulfurylase, subunit 1; Similar to E. coli ATP:sulfurylase (ATP:sulfate adenylyltransferase), subunit 2 (AAC75794.1); Blastp hit to AAC75794.1 (302 aa), 97% identity in aa 1 - 302. (302 aa)
cysNATP-sulfurylase, subunit 1; May be the GTPase, regulating ATP sulfurylase activity. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. CysN/NodQ subfamily. (479 aa)
cysCAdenosine 5'-phosphosulfate kinase; Catalyzes the synthesis of activated sulfate. (201 aa)
moeBMolybdopterin biosynthesis; Catalyzes the adenylation by ATP of the carboxyl group of the C-terminal glycine of sulfur carrier protein MoaD. (249 aa)
moaDSimilar to E. coli molybdopterin biosynthesis (AAC73871.1); Blastp hit to AAC73871.1 (81 aa), 86% identity in aa 1 - 81. (83 aa)
STMF1.36Putative protein involved in thiamine biosynthesis. (66 aa)
Your Current Organism:
Salmonella enterica Typhimurium
NCBI taxonomy Id: 99287
Other names: S. enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium LT2, Salmonella enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2-LTL2, Salmonella typhimurium LT2
Server load: low (20%) [HD]