STRINGSTRING
pncB pncB nadE nadE nadR nadR yfjB yfjB nadB nadB hisA hisA nadC nadC panC panC nadD nadD nadA nadA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
pncBNicotinate phosphoribosyltransferase; Catalyzes the synthesis of beta-nicotinate D-ribonucleotide from nicotinate and 5-phospho-D-ribose 1-phosphate at the expense of ATP. (400 aa)
nadENAD synthetase; Catalyzes the ATP-dependent amidation of deamido-NAD to form NAD. Uses ammonia as a nitrogen source. (275 aa)
nadRTrifunctional protein; This enzyme has three activities: DNA binding, nicotinamide mononucleotide (NMN) adenylyltransferase and ribosylnicotinamide (RN) kinase. The DNA-binding domain binds to the nadB operator sequence in an NAD- and ATP-dependent manner. As NAD levels increase within the cell, the affinity of NadR for the nadB operator regions of nadA, nadB, and pncB increases, repressing the transcription of these genes. The RN kinase activity catalyzes the phosphorylation of RN to form nicotinamide ribonucleotide. The NMN adenylyltransferase activity catalyzes the transfer of the A [...] (410 aa)
yfjBPutative kinase; Involved in the regulation of the intracellular balance of NAD and NADP, and is a key enzyme in the biosynthesis of NADP. Catalyzes specifically the phosphorylation on 2'-hydroxyl of the adenosine moiety of NAD to yield NADP. It can use ATP and other nucleoside triphosphates as a source of phosphorus. NADH cannot replace NAD as a substrate. (292 aa)
nadBQuinolinate synthetase, B protein; Catalyzes the oxidation of L-aspartate to iminoaspartate. (540 aa)
hisAN-(5'-phospho-L-ribosyl-formimino)-5-amino-1- (5'-phosphoribosyl)-4-imidazolecarboxamide isomerase; Phosphoribosylformimino-5-aminoimidazole carboxamide ribotideisomerase. (SW:HIS4_SALTY). (245 aa)
nadCQuinolinate phosphoribosyltransferase; Involved in the catabolism of quinolinic acid (QA). Belongs to the NadC/ModD family. (297 aa)
panCPantothenate synthetase; Catalyzes the condensation of pantoate with beta-alanine in an ATP-dependent reaction via a pantoyl-adenylate intermediate. Belongs to the pantothenate synthetase family. (284 aa)
nadDPutative nicotinic acid mononucleotide adenylyltransferase; Catalyzes the reversible adenylation of nicotinate mononucleotide (NaMN) to nicotinic acid adenine dinucleotide (NaAD). (213 aa)
nadAQuinolinate synthetase, A protein; Catalyzes the condensation of iminoaspartate with dihydroxyacetone phosphate to form quinolinate. (347 aa)
Your Current Organism:
Salmonella enterica Typhimurium
NCBI taxonomy Id: 99287
Other names: S. enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium LT2, Salmonella enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2-LTL2, Salmonella typhimurium LT2
Server load: low (12%) [HD]