node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
acnA | fumC | STM1712 | STM1469 | Aconitate hydratase 1; Involved in the catabolism of short chain fatty acids (SCFA) via the tricarboxylic acid (TCA)(acetyl degradation route) and the 2- methylcitrate cycle I (propionate degradation route). Catalyzes the reversible isomerization of citrate to isocitrate via cis-aconitate. Also catalyzes the hydration of 2-methyl-cis-aconitate to yield (2R,3S)-2-methylisocitrate. The (2S,3S)-2-methylcitrate (2-MC) is a very poor substrate. The apo form of AcnA functions as a RNA-binding regulatory protein (By similarity). Belongs to the aconitase/IPM isomerase family. | Fumarase C; Involved in the TCA cycle. Catalyzes the stereospecific interconversion of fumarate to L-malate; Belongs to the class-II fumarase/aspartase family. Fumarase subfamily. | 0.901 |
acnA | grxA | STM1712 | STM0872 | Aconitate hydratase 1; Involved in the catabolism of short chain fatty acids (SCFA) via the tricarboxylic acid (TCA)(acetyl degradation route) and the 2- methylcitrate cycle I (propionate degradation route). Catalyzes the reversible isomerization of citrate to isocitrate via cis-aconitate. Also catalyzes the hydration of 2-methyl-cis-aconitate to yield (2R,3S)-2-methylisocitrate. The (2S,3S)-2-methylcitrate (2-MC) is a very poor substrate. The apo form of AcnA functions as a RNA-binding regulatory protein (By similarity). Belongs to the aconitase/IPM isomerase family. | Redox coenzyme for glutathione-dependent ribonucleotide reductase glutaredoxin1; The disulfide bond functions as an electron carrier in the glutathione-dependent synthesis of deoxyribonucleotides by the enzyme ribonucleotide reductase. In addition, it is also involved in reducing some disulfides in a coupled system with glutathione reductase (By similarity); Belongs to the glutaredoxin family. | 0.439 |
acnA | katG | STM1712 | STM4106 | Aconitate hydratase 1; Involved in the catabolism of short chain fatty acids (SCFA) via the tricarboxylic acid (TCA)(acetyl degradation route) and the 2- methylcitrate cycle I (propionate degradation route). Catalyzes the reversible isomerization of citrate to isocitrate via cis-aconitate. Also catalyzes the hydration of 2-methyl-cis-aconitate to yield (2R,3S)-2-methylisocitrate. The (2S,3S)-2-methylcitrate (2-MC) is a very poor substrate. The apo form of AcnA functions as a RNA-binding regulatory protein (By similarity). Belongs to the aconitase/IPM isomerase family. | Catalase; Bifunctional enzyme with both catalase and broad-spectrum peroxidase activity; Belongs to the peroxidase family. Peroxidase/catalase subfamily. | 0.454 |
acnA | sodA | STM1712 | STM4055 | Aconitate hydratase 1; Involved in the catabolism of short chain fatty acids (SCFA) via the tricarboxylic acid (TCA)(acetyl degradation route) and the 2- methylcitrate cycle I (propionate degradation route). Catalyzes the reversible isomerization of citrate to isocitrate via cis-aconitate. Also catalyzes the hydration of 2-methyl-cis-aconitate to yield (2R,3S)-2-methylisocitrate. The (2S,3S)-2-methylcitrate (2-MC) is a very poor substrate. The apo form of AcnA functions as a RNA-binding regulatory protein (By similarity). Belongs to the aconitase/IPM isomerase family. | Superoxide dismutase; Destroys superoxide anion radicals which are normally produced within the cells and which are toxic to biological systems; Belongs to the iron/manganese superoxide dismutase family. | 0.813 |
acnA | soxR | STM1712 | STM4266 | Aconitate hydratase 1; Involved in the catabolism of short chain fatty acids (SCFA) via the tricarboxylic acid (TCA)(acetyl degradation route) and the 2- methylcitrate cycle I (propionate degradation route). Catalyzes the reversible isomerization of citrate to isocitrate via cis-aconitate. Also catalyzes the hydration of 2-methyl-cis-aconitate to yield (2R,3S)-2-methylisocitrate. The (2S,3S)-2-methylcitrate (2-MC) is a very poor substrate. The apo form of AcnA functions as a RNA-binding regulatory protein (By similarity). Belongs to the aconitase/IPM isomerase family. | Redox-sensing transcriptional activator SoxR; Activates the transcription of the soxS gene which itself controls the superoxide response regulon. SoxR contains a 2Fe-2S iron- sulfur cluster that may act as a redox sensor system that recognizes superoxide. The variable redox state of the Fe-S cluster is employed in vivo to modulate the transcriptional activity of SoxR in response to specific types of oxidative stress (By similarity). | 0.501 |
acnA | zwf | STM1712 | STM1886 | Aconitate hydratase 1; Involved in the catabolism of short chain fatty acids (SCFA) via the tricarboxylic acid (TCA)(acetyl degradation route) and the 2- methylcitrate cycle I (propionate degradation route). Catalyzes the reversible isomerization of citrate to isocitrate via cis-aconitate. Also catalyzes the hydration of 2-methyl-cis-aconitate to yield (2R,3S)-2-methylisocitrate. The (2S,3S)-2-methylcitrate (2-MC) is a very poor substrate. The apo form of AcnA functions as a RNA-binding regulatory protein (By similarity). Belongs to the aconitase/IPM isomerase family. | Glucose-6-phosphate dehydrogenase; Catalyzes the oxidation of glucose 6-phosphate to 6- phosphogluconolactone. | 0.782 |
ahpF | fldB | STM0609 | STM3045 | Alkyl hydroperoxide reductase, F52a subunit; Serves to protect the cell against DNA damage by alkyl hydroperoxides. It can use either NADH or NADPH as electron donor for direct reduction of redox dyes or of alkyl hydroperoxides when combined with the AhpC protein; Belongs to the class-II pyridine nucleotide-disulfide oxidoreductase family. | Flavodoxin 2; Low-potential electron donor to a number of redox enzymes. Belongs to the flavodoxin family. | 0.455 |
ahpF | grxA | STM0609 | STM0872 | Alkyl hydroperoxide reductase, F52a subunit; Serves to protect the cell against DNA damage by alkyl hydroperoxides. It can use either NADH or NADPH as electron donor for direct reduction of redox dyes or of alkyl hydroperoxides when combined with the AhpC protein; Belongs to the class-II pyridine nucleotide-disulfide oxidoreductase family. | Redox coenzyme for glutathione-dependent ribonucleotide reductase glutaredoxin1; The disulfide bond functions as an electron carrier in the glutathione-dependent synthesis of deoxyribonucleotides by the enzyme ribonucleotide reductase. In addition, it is also involved in reducing some disulfides in a coupled system with glutathione reductase (By similarity); Belongs to the glutaredoxin family. | 0.860 |
ahpF | katG | STM0609 | STM4106 | Alkyl hydroperoxide reductase, F52a subunit; Serves to protect the cell against DNA damage by alkyl hydroperoxides. It can use either NADH or NADPH as electron donor for direct reduction of redox dyes or of alkyl hydroperoxides when combined with the AhpC protein; Belongs to the class-II pyridine nucleotide-disulfide oxidoreductase family. | Catalase; Bifunctional enzyme with both catalase and broad-spectrum peroxidase activity; Belongs to the peroxidase family. Peroxidase/catalase subfamily. | 0.953 |
ahpF | oxyR | STM0609 | STM4125 | Alkyl hydroperoxide reductase, F52a subunit; Serves to protect the cell against DNA damage by alkyl hydroperoxides. It can use either NADH or NADPH as electron donor for direct reduction of redox dyes or of alkyl hydroperoxides when combined with the AhpC protein; Belongs to the class-II pyridine nucleotide-disulfide oxidoreductase family. | Regulatory protein sensor for oxidative stress; Regulates intracellular hydrogen peroxide (LysR family); similar to E. coli activator, hydrogen peroxide-inducible genes (AAC76943.1); Blastp hit to AAC76943.1 (305 aa), 95% identity in aa 1 - 305; Belongs to the LysR transcriptional regulatory family. | 0.893 |
ahpF | sodA | STM0609 | STM4055 | Alkyl hydroperoxide reductase, F52a subunit; Serves to protect the cell against DNA damage by alkyl hydroperoxides. It can use either NADH or NADPH as electron donor for direct reduction of redox dyes or of alkyl hydroperoxides when combined with the AhpC protein; Belongs to the class-II pyridine nucleotide-disulfide oxidoreductase family. | Superoxide dismutase; Destroys superoxide anion radicals which are normally produced within the cells and which are toxic to biological systems; Belongs to the iron/manganese superoxide dismutase family. | 0.845 |
ahpF | soxR | STM0609 | STM4266 | Alkyl hydroperoxide reductase, F52a subunit; Serves to protect the cell against DNA damage by alkyl hydroperoxides. It can use either NADH or NADPH as electron donor for direct reduction of redox dyes or of alkyl hydroperoxides when combined with the AhpC protein; Belongs to the class-II pyridine nucleotide-disulfide oxidoreductase family. | Redox-sensing transcriptional activator SoxR; Activates the transcription of the soxS gene which itself controls the superoxide response regulon. SoxR contains a 2Fe-2S iron- sulfur cluster that may act as a redox sensor system that recognizes superoxide. The variable redox state of the Fe-S cluster is employed in vivo to modulate the transcriptional activity of SoxR in response to specific types of oxidative stress (By similarity). | 0.651 |
ahpF | soxS | STM0609 | STM4265 | Alkyl hydroperoxide reductase, F52a subunit; Serves to protect the cell against DNA damage by alkyl hydroperoxides. It can use either NADH or NADPH as electron donor for direct reduction of redox dyes or of alkyl hydroperoxides when combined with the AhpC protein; Belongs to the class-II pyridine nucleotide-disulfide oxidoreductase family. | Transcriptional activator of superoxide response regulon; Transcriptional activator of the superoxide response regulon of E.coli that includes at least 10 genes such as sodA, nfo, zwf and micF. Binds the DNA sequence 5'-GCACN(7)CAA-3'. It also facilitates the subsequent binding of RNA polymerase to the micF and the nfo promoters (By similarity). | 0.581 |
ahpF | trxC | STM0609 | STM2649 | Alkyl hydroperoxide reductase, F52a subunit; Serves to protect the cell against DNA damage by alkyl hydroperoxides. It can use either NADH or NADPH as electron donor for direct reduction of redox dyes or of alkyl hydroperoxides when combined with the AhpC protein; Belongs to the class-II pyridine nucleotide-disulfide oxidoreductase family. | Similar to E. coli putative thioredoxin-like protein (AAC75635.1); Blastp hit to AAC75635.1 (139 aa), 94% identity in aa 1 - 139; Belongs to the thioredoxin family. | 0.943 |
fldB | ahpF | STM3045 | STM0609 | Flavodoxin 2; Low-potential electron donor to a number of redox enzymes. Belongs to the flavodoxin family. | Alkyl hydroperoxide reductase, F52a subunit; Serves to protect the cell against DNA damage by alkyl hydroperoxides. It can use either NADH or NADPH as electron donor for direct reduction of redox dyes or of alkyl hydroperoxides when combined with the AhpC protein; Belongs to the class-II pyridine nucleotide-disulfide oxidoreductase family. | 0.455 |
fldB | grxA | STM3045 | STM0872 | Flavodoxin 2; Low-potential electron donor to a number of redox enzymes. Belongs to the flavodoxin family. | Redox coenzyme for glutathione-dependent ribonucleotide reductase glutaredoxin1; The disulfide bond functions as an electron carrier in the glutathione-dependent synthesis of deoxyribonucleotides by the enzyme ribonucleotide reductase. In addition, it is also involved in reducing some disulfides in a coupled system with glutathione reductase (By similarity); Belongs to the glutaredoxin family. | 0.523 |
fldB | nfo | STM3045 | STM2203 | Flavodoxin 2; Low-potential electron donor to a number of redox enzymes. Belongs to the flavodoxin family. | Endonuclease IV; Endonuclease IV plays a role in DNA repair. It cleaves phosphodiester bonds at apurinic or apyrimidinic (AP) sites, generating a 3'-hydroxyl group and a 5'-terminal sugar phosphate. | 0.529 |
fldB | soxR | STM3045 | STM4266 | Flavodoxin 2; Low-potential electron donor to a number of redox enzymes. Belongs to the flavodoxin family. | Redox-sensing transcriptional activator SoxR; Activates the transcription of the soxS gene which itself controls the superoxide response regulon. SoxR contains a 2Fe-2S iron- sulfur cluster that may act as a redox sensor system that recognizes superoxide. The variable redox state of the Fe-S cluster is employed in vivo to modulate the transcriptional activity of SoxR in response to specific types of oxidative stress (By similarity). | 0.456 |
fumC | acnA | STM1469 | STM1712 | Fumarase C; Involved in the TCA cycle. Catalyzes the stereospecific interconversion of fumarate to L-malate; Belongs to the class-II fumarase/aspartase family. Fumarase subfamily. | Aconitate hydratase 1; Involved in the catabolism of short chain fatty acids (SCFA) via the tricarboxylic acid (TCA)(acetyl degradation route) and the 2- methylcitrate cycle I (propionate degradation route). Catalyzes the reversible isomerization of citrate to isocitrate via cis-aconitate. Also catalyzes the hydration of 2-methyl-cis-aconitate to yield (2R,3S)-2-methylisocitrate. The (2S,3S)-2-methylcitrate (2-MC) is a very poor substrate. The apo form of AcnA functions as a RNA-binding regulatory protein (By similarity). Belongs to the aconitase/IPM isomerase family. | 0.901 |
fumC | katG | STM1469 | STM4106 | Fumarase C; Involved in the TCA cycle. Catalyzes the stereospecific interconversion of fumarate to L-malate; Belongs to the class-II fumarase/aspartase family. Fumarase subfamily. | Catalase; Bifunctional enzyme with both catalase and broad-spectrum peroxidase activity; Belongs to the peroxidase family. Peroxidase/catalase subfamily. | 0.409 |