Your Input: | |||||
yjgF | Putative translation initiation inhibitor; Accelerates the release of ammonia from reactive enamine/imine intermediates of the PLP-dependent threonine dehydratase (IlvA) in the low water environment of the cell. It catalyzes the deamination of enamine/imine intermediates to yield 2-ketobutyrate and ammonia. It is required for the detoxification of reactive intermediates of IlvA due to their highly nucleophilic abilities and to avoid they are captured by anthranilate phosphoribosyltransferase (TrpD) to generate PRA, an intermediate in the alternative pyrimidine biosynthetic (APB) pathwa [...] (128 aa) | ||||
thiL | Thiamin-monophosphate kinase; Catalyzes the ATP-dependent phosphorylation of thiamine- monophosphate (TMP) to form thiamine-pyrophosphate (TPP), the active form of vitamin B1. (325 aa) | ||||
apbA | Ketopantoate reductase; Catalyzes the NADPH-dependent reduction of ketopantoate into pantoic acid. Has a strong preference for NADPH over NADH as the electron acceptor. Pantoate, ketoisovalerate, oxaloacetate, pyruvate, 3-hydroxypyruvate, alpha-ketoglutarate, alpha-ketobutyrate, and acetaldehyde cannot serve as substrates for reduction. (303 aa) | ||||
purE | Phosphoribosylaminoimidazole carboxylase = AIR carboxylase, catalytic subunit; Catalyzes the conversion of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to 4-carboxy-5-aminoimidazole ribonucleotide (CAIR). (169 aa) | ||||
trpD | Anthranilate synthase, component II; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, an intermediate in the biosynthesis of L-tryptophan. In the first step, the glutamine-binding beta subunit (TrpG) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by the large alpha subunit of AS (TrpE) to produce anthranilate. In the absence of TrpG, TrpE can synthesize anthranilate directly from chorismate and high concen [...] (531 aa) | ||||
trpC | N-(5-phosphoribosyl)anthranilate isomerase; Bifunctional enzyme that catalyzes two sequential steps of tryptophan biosynthetic pathway. The first reaction is catalyzed by the isomerase, coded by the TrpF domain; the second reaction is catalyzed by the synthase, coded by the TrpC domain (By similarity). (452 aa) | ||||
prsA | Phosphoribosylpyrophosphate synthetase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P). (315 aa) | ||||
gnd | Gluconate-6-phosphate dehydrogenase; Catalyzes the oxidative decarboxylation of 6-phosphogluconate to ribulose 5-phosphate and CO(2), with concomitant reduction of NADP to NADPH. (468 aa) | ||||
mrp | Putative ATP-binding protein; Binds and transfers iron-sulfur (Fe-S) clusters to target apoproteins. Can hydrolyze ATP. Both activities are required for function in vivo, but the ability to hydrolyze ATP is not necessary for Fe-S cluster transfer. (369 aa) | ||||
apbE | Putative thiamine biosynthesis lipoprotein; Flavin transferase that catalyzes the transfer of the FMN moiety of FAD and its covalent binding to the hydroxyl group of a threonine residue in a target flavoprotein such as NqrB and NqrC, two subunits of the NQR complex; Belongs to the ApbE family. (350 aa) | ||||
gyrA | DNA gyrase, subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state, and also catalyzes the interconversion of other topological isomers of double-stranded DNA rings, including catenanes and knotted rings. Replenishes negative supercoiling downstream of highly transcribed genes to help control overall chromosomal supercoiling density. E.coli makes 15% more negative supercoils in pBR322 plasmid DNA than S.typhimurium; the S.typhimurium GyrB s [...] (878 aa) | ||||
purF | Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family. (505 aa) | ||||
STM2573 | Putative ketopantoate reductase; Catalyzes the NADPH-dependent reduction of ketopantoate into pantoic acid. (305 aa) | ||||
rseC | Similar to E. coli sigma-E factor, negative regulatory protein (AAC75623.1); Blastp hit to AAC75623.1 (159 aa), 81% identity in aa 1 - 159. (159 aa) | ||||
gshA | Glutamate--cysteine ligase. (SW:GSH1_SALTY); Belongs to the glutamate--cysteine ligase type 1 family. Type 1 subfamily. (518 aa) | ||||
yggX | Putative cytoplasmic protein; Could be a mediator in iron transactions between iron acquisition and iron-requiring processes, such as synthesis and/or repair of Fe-S clusters in biosynthetic enzymes. Necessary to maintain high levels of aconitase under oxidative stress. (91 aa) | ||||
rpoD | Sigma D factor of RNA polymerase; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth. (660 aa) | ||||
tdcB | Threonine dehydratase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA. TdcB also dehydrates serine to yield pyruv [...] (329 aa) | ||||
ilvE | Branched-chain amino-acid aminotransferase; Acts on leucine, isoleucine and valine. (309 aa) | ||||
ilvA | Threonine deaminase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA (By similarity). Belongs to the serine/threon [...] (514 aa) | ||||
ilvC | Ketol-acid reductoisomerase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. (491 aa) | ||||
thiH | Thiamin biosynthesis protein, thiazole moiety; Catalyzes the radical-mediated cleavage of tyrosine to 2- iminoacetate and 4-cresol; Belongs to the radical SAM superfamily. ThiH family. (377 aa) | ||||
thiE | Thiamin phosphate synthase; Condenses 4-methyl-5-(beta-hydroxyethyl)thiazole monophosphate (THZ-P) and 2-methyl-4-amino-5-hydroxymethyl pyrimidine pyrophosphate (HMP-PP) to form thiamine monophosphate (TMP). Belongs to the thiamine-phosphate synthase family. (211 aa) | ||||
thiC | 5'-phosphoryl-5-aminoimidazole; Catalyzes the synthesis of the hydroxymethylpyrimidine phosphate (HMP-P) moiety of thiamine from aminoimidazole ribotide (AIR) in a radical S-adenosyl-L-methionine (SAM)-dependent reaction. (631 aa) | ||||
soxR | Redox-sensing transcriptional activator SoxR; Activates the transcription of the soxS gene which itself controls the superoxide response regulon. SoxR contains a 2Fe-2S iron- sulfur cluster that may act as a redox sensor system that recognizes superoxide. The variable redox state of the Fe-S cluster is employed in vivo to modulate the transcriptional activity of SoxR in response to specific types of oxidative stress (By similarity). (152 aa) |