Your Input: | |||||
sodA | Superoxide dismutase; Destroys superoxide anion radicals which are normally produced within the cells and which are toxic to biological systems; Belongs to the iron/manganese superoxide dismutase family. (206 aa) | ||||
lexA | SOS response regulator; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. Binds to the 16 bp palindromic sequence 5'-CTGTATATATATACAG-3'. In the presence of single- stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. (202 aa) | ||||
uvrA | DNA excision repair enzyme; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate; Belongs to the ABC transporter superfamily. UvrA family. (941 aa) | ||||
mopA | Chaperone Hsp60 with peptide-dependent ATPase activity; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. (548 aa) | ||||
mutL | Enzyme in methyl-directed mismatch repair; This protein is involved in the repair of mismatches in DNA. It is required for dam-dependent methyl-directed DNA mismatch repair. May act as a 'molecular matchmaker', a protein that promotes the formation of a stable complex between two or more DNA-binding proteins in an ATP-dependent manner without itself being part of a final effector complex. (618 aa) | ||||
cysK | Subunit of cysteine synthase A and O-acetylserine sulfhydrolase A; Two cysteine synthase enzymes are found, this enzyme and CysM; both catalyze the same reaction. Cysteine synthase B (CysM) can also use thiosulfate in place of sulfide to give cysteine thiosulfonate as a product. (323 aa) | ||||
mntH | Manganese/divalent cation transport protein; H(+)-stimulated, divalent metal cation uptake system. Involved in manganese and iron uptake; Belongs to the NRAMP family. (413 aa) | ||||
nfo | Endonuclease IV; Endonuclease IV plays a role in DNA repair. It cleaves phosphodiester bonds at apurinic or apyrimidinic (AP) sites, generating a 3'-hydroxyl group and a 5'-terminal sugar phosphate. (285 aa) | ||||
uvrC | UvrC; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5' and 3' sides of the lesion. The N-terminal half is responsible for the 3' incision and the C-terminal half is responsible for the 5' incision. (610 aa) | ||||
ruvC | Holliday junction nuclease; Nuclease that resolves Holliday junction intermediates in genetic recombination. Cleaves the cruciform structure in supercoiled DNA by nicking to strands with the same polarity at sites symmetrically opposed at the junction in the homologous arms and leaves a 5'-terminal phosphate and a 3'-terminal hydroxyl group. (173 aa) | ||||
znuB | ABC superfamily high affinity Zn transport protein; ATP-binding protein; similar to E. coli orf, hypothetical protein (AAC74929.1); Blastp hit to AAC74929.1 (261 aa), 96% identity in aa 1 - 261. (261 aa) | ||||
marR | Transcriptional repressor of marRAB operon; Repressor of the marRAB operon which is involved in the activation of both antibiotic resistance and oxidative stress genes. Binds to the marO operator/promoter site. (144 aa) | ||||
nth | Endonuclease III; DNA repair enzyme that has both DNA N-glycosylase activity and AP-lyase activity. The DNA N-glycosylase activity releases various damaged pyrimidines from DNA by cleaving the N-glycosidic bond, leaving an AP (apurinic/apyrimidinic) site. The AP-lyase activity cleaves the phosphodiester bond 3' to the AP site by a beta-elimination, leaving a 3'-terminal unsaturated sugar and a product with a terminal 5'- phosphate. (211 aa) | ||||
ssrA | Secretion system regulator: Sensor component; SpiR (gi|1498305). (920 aa) | ||||
yeaA | Hypothetical protein; Putative domain frequently associated with peptide methionine sulfoxide reductase; similar to E. coli orf, hypothetical protein (AAC74848.1); Blastp hit to AAC74848.1 (137 aa), 85% identity in aa 1 - 137. (147 aa) | ||||
mfd | Transcription-repair coupling factor; Couples transcription and DNA repair by recognizing RNA polymerase (RNAP) stalled at DNA lesions. Mediates ATP-dependent release of RNAP and its truncated transcript from the DNA, and recruitment of nucleotide excision repair machinery to the damaged site; In the C-terminal section; belongs to the helicase family. RecG subfamily. (1148 aa) | ||||
mntR | Putative Mn-dependent transcriptional regulator; In the presence of manganese, represses expression of mntH and mntS. Up-regulates expression of mntP (By similarity). Belongs to the DtxR/MntR family. (157 aa) | ||||
uvrB | UvrB with UvrAC is a DNA excision repair enzyme; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA [...] (673 aa) | ||||
ahpF | Alkyl hydroperoxide reductase, F52a subunit; Serves to protect the cell against DNA damage by alkyl hydroperoxides. It can use either NADH or NADPH as electron donor for direct reduction of redox dyes or of alkyl hydroperoxides when combined with the AhpC protein; Belongs to the class-II pyridine nucleotide-disulfide oxidoreductase family. (521 aa) | ||||
fhuC | Hydroxymate-dependent iron transport; ABC superfamily (atp_bind); similar to E. coli ATP-binding component of hydroxymate-dependent iron transport (AAC73262.1); Blastp hit to AAC73262.1 (265 aa), 92% identity in aa 1 - 265. (265 aa) | ||||
mutT | Prefers dGTP; similar to E. coli 7,8-dihydro-8-oxoguanine-triphosphatase, prefers dGTP, causes AT-GC transversions (AAC73210.1); Blastp hit to AAC73210.1 (129 aa), 80% identity in aa 1 - 128; Belongs to the Nudix hydrolase family. (131 aa) | ||||
nifS | Putative aminotransferase class-V; Master enzyme that delivers sulfur to a number of partners involved in Fe-S cluster assembly, tRNA modification or cofactor biosynthesis. Catalyzes the removal of elemental sulfur and selenium atoms from cysteine and selenocysteine to produce alanine. Functions as a sulfur delivery protein for Fe-S cluster synthesis onto IscU, an Fe-S scaffold assembly protein, as well as other S acceptor proteins. Also functions as a selenium delivery protein in the pathway for the biosynthesis of selenophosphate; Belongs to the class-V pyridoxal-phosphate-dependent [...] (404 aa) | ||||
hmpA | Dihydropteridine reductase 2; Is involved in NO detoxification in an aerobic process, termed nitric oxide dioxygenase (NOD) reaction that utilizes O(2) and NAD(P)H to convert NO to nitrate, which protects the bacterium from various noxious nitrogen compounds. Therefore, plays a central role in the inducible response to nitrosative stress. Belongs to the globin family. Two-domain flavohemoproteins subfamily. (396 aa) | ||||
cadC | OmpR family; similar to E. coli transcriptional activator of cad operon (AAC77094.1); Blastp hit to AAC77094.1 (512 aa), 58% identity in aa 1 - 512. (514 aa) | ||||
recA | DNA strand exchange and recombination protein; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage. (353 aa) | ||||
recB | Exonuclease V, beta chain; A helicase/nuclease that prepares dsDNA breaks (DSB) for recombinational DNA repair. Binds to DSBs and unwinds DNA via a highly rapid and processive ATP-dependent bidirectional helicase activity. Unwinds dsDNA until it encounters a Chi (crossover hotspot instigator) sequence from the 3' direction. Cuts ssDNA a few nucleotides 3' to the Chi site. The properties and activities of the enzyme are changed at Chi. The Chi-altered holoenzyme produces a long 3'-ssDNA overhang and facilitates RecA-binding to the ssDNA for homologous DNA recombination and repair. Holoe [...] (1181 aa) | ||||
recJ | ssDNA exonuclease; Single-stranded-DNA-specific exonuclease. Required for many types of recombinational events, although the stringency of the requirement for RecJ appears to vary with the type of recombinational event monitored and the other recombination gene products which are available. (577 aa) | ||||
mutY | Adenine DNA glycosylase; Adenine glycosylase active on G-A mispairs. MutY also corrects error-prone DNA synthesis past GO lesions which are due to the oxidatively damaged form of guanine: 7,8-dihydro-8-oxoguanine (8-oxo- dGTP); Belongs to the Nth/MutY family. (350 aa) | ||||
zntR | MerR family; similar to E. coli putative transcriptional regulator (AAC76317.1); Blastp hit to AAC76317.1 (141 aa), 92% identity in aa 1 - 141. (141 aa) | ||||
yjeB | Putative negative regulator; Nitric oxide-sensitive repressor of genes involved in protecting the cell against nitrosative stress. May require iron for activity. Represses hmp expression under conditions of elevated intracellular iron concentrations, in the absence of nitric oxide. (141 aa) | ||||
ytfE | Putative cell morphogenesis; Di-iron-containing protein involved in the repair of iron- sulfur clusters damaged by oxidative and nitrosative stress conditions. (220 aa) | ||||
msrA | Peptide methionine sulfoxide reductase; Has an important function as a repair enzyme for proteins that have been inactivated by oxidation. Catalyzes the reversible oxidation-reduction of methionine sulfoxide in proteins to methionine. (212 aa) | ||||
zntA | P-type ATPase family; Pb/Cd/Zn/Hg transporting ATPase; similar to E. coli zinc-transporting ATPase (AAC76494.1); Blastp hit to AAC76494.1 (732 aa), 84% identity in aa 1 - 731. (732 aa) | ||||
mutM | Formamidopyrimidine DNA glycosylase; Involved in base excision repair of DNA damaged by oxidation or by mutagenic agents. Acts as DNA glycosylase that recognizes and removes damaged bases. Has a preference for oxidized purines, such as 7,8-dihydro-8-oxoguanine (8-oxoG). Has AP (apurinic/apyrimidinic) lyase activity and introduces nicks in the DNA strand. Cleaves the DNA backbone by beta-delta elimination to generate a single-strand break at the site of the removed base with both 3'- and 5'-phosphates (By similarity). (269 aa) | ||||
recG | DNA helicase; Critical role in recombination and DNA repair. Helps process Holliday junction intermediates to mature products by catalyzing branch migration. Has a DNA unwinding activity characteristic of a DNA helicase with a 3'- to 5'- polarity. Unwinds branched duplex DNA (Y- DNA); Belongs to the helicase family. RecG subfamily. (693 aa) | ||||
recF | Gap repair protein; The RecF protein is involved in DNA metabolism; it is required for DNA replication and normal SOS inducibility. RecF binds preferentially to single-stranded, linear DNA. It also seems to bind ATP (By similarity). (357 aa) | ||||
trxA | Thioredoxin 1; Participates in various redox reactions through the reversible oxidation of its active center dithiol to a disulfide and catalyzes dithiol-disulfide exchange reactions; Belongs to the thioredoxin family. (109 aa) | ||||
uvrD | DNA-dependent ATPase I and helicase II; Has both ATPase and helicase activities. Unwinds DNA duplexes with 3' to 5' polarity with respect to the bound strand and initiates unwinding most effectively when a single-stranded region is present. Involved in the post-incision events of nucleotide excision repair and methyl-directed mismatch repair; Belongs to the helicase family. UvrD subfamily. (720 aa) |