STRINGSTRING
clpP clpP dnaJ dnaJ dnaK dnaK purH purH atpF atpF fusA fusA rpoA rpoA rpoD rpoD fba fba eno eno grpE grpE purM purM uraA uraA purC purC cbpA cbpA nusB nusB
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
clpPProteolytic subunit of clpA-clpP ATP-dependent serine protease; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family. (207 aa)
dnaJHeat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] (379 aa)
dnaKChaperone Hsp70; Acts as a chaperone. (638 aa)
purHPhosphoribosylaminoimidazolecarboxamide formyltransferase; Bifunctional; bifunctional purine biosynthesis protein PURH. (SW:PUR9_SALTY); IMP cyclohydrolase. (529 aa)
atpFMembrane-bound ATP synthase, F0 sector, subunit b; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (156 aa)
fusAProtein chain elongation factor EF-G; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome (By similarity); Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPas [...] (704 aa)
rpoARNA polymerase, alpha subunit; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. (329 aa)
rpoDSigma D factor of RNA polymerase; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth. (660 aa)
fbaFructose-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis; Belongs to the class II fructose-bisphosphate aldolase family. (359 aa)
enoEnolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. (432 aa)
grpEMolecular chaparone; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-depe [...] (196 aa)
purMAIR synthetase; similar to E. coli phosphoribosylaminoimidazole synthetase = AIR synthetase (AAC75552.1); Blastp hit to AAC75552.1 (345 aa), 91% identity in aa 1 - 345. (345 aa)
uraANCS2 family uracil transport protein; Similar to E. coli uracil transport (AAC75550.1); Blastp hit to AAC75550.1 (429 aa), 94% identity in aa 1 - 425. (429 aa)
purCSAICAR synthetase; similar to E. coli phosphoribosylaminoimidazole-succinocarboxamide synthetase = SAICAR synthetase (AAC75529.1); Blastp hit to AAC75529.1 (237 aa), 94% identity in aa 1 - 237. (237 aa)
cbpACurved DNA-binding protein; DNA-binding protein that preferentially recognizes a curved DNA sequence. It is probably a functional analog of DnaJ; displays overlapping activities with DnaJ, but functions under different conditions, probably acting as a molecular chaperone in an adaptive response to environmental stresses other than heat shock. Lacks autonomous chaperone activity; binds native substrates and targets them for recognition by DnaK. Its activity is inhibited by the binding of CbpM. (306 aa)
nusBTranscription termination; Involved in transcription antitermination. Required for transcription of ribosomal RNA (rRNA) genes. Binds specifically to the boxA antiterminator sequence of the ribosomal RNA (rrn) operons. (139 aa)
Your Current Organism:
Salmonella enterica Typhimurium
NCBI taxonomy Id: 99287
Other names: S. enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium LT2, Salmonella enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2-LTL2, Salmonella typhimurium LT2
Server load: low (24%) [HD]