STRINGSTRING
ftsZ ftsZ fljB fljB fliC fliC msbB msbB ompA ompA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ftsZTubulin-like GTP-binding protein and GTPase; Essential cell division protein that forms a contractile ring structure (Z ring) at the future cell division site. The regulation of the ring assembly controls the timing and the location of cell division. One of the functions of the FtsZ ring is to recruit other cell division proteins to the septum to produce a new cell wall between the dividing cells. Binds GTP and shows GTPase activity. (383 aa)
fljBFilament structural protein; Flagellin is the subunit protein which polymerizes to form the filaments of bacterial flagella. (506 aa)
fliCFlagellar biosynthesis; Flagellin is the subunit protein which polymerizes to form the filaments of bacterial flagella. (495 aa)
msbBMyristoyl transferase in lipid A biosynthesis; Catalyzes the transfer of myristate from myristoyl-acyl carrier protein (ACP) to Kdo(2)-(lauroyl)-lipid IV(A) to form Kdo(2)- lipid A. (323 aa)
ompAPutative membrane component hydrogenase; With TolR probably plays a role in maintaining the position of the peptidoglycan cell wall in the periplasm. Acts as a porin with low permeability that allows slow penetration of small solutes; an internal gate slows down solute passage. (350 aa)
Your Current Organism:
Salmonella enterica Typhimurium
NCBI taxonomy Id: 99287
Other names: S. enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium LT2, Salmonella enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2-LTL2, Salmonella typhimurium LT2
Server load: low (18%) [HD]