Your Input: | |||||
rpoE | Sigma E (sigma 24) factor of RNA polymerase; Sigma factors are initiation factors that promote the attachment of RNA polymerase (RNAP) to specific initiation sites and are then released. Extracytoplasmic function (ECF) sigma-E controls the envelope stress response, responding to periplasmic protein stress, increased levels of periplasmic lipopolysaccharide (LPS) as well as acid stress, heat shock and oxidative stress; it controls protein processing in the extracytoplasmic compartment (By similarity). (191 aa) | ||||
csrA | Carbon storage regulator; A key translational regulator that binds mRNA to regulate translation initiation and/or mRNA stability. Mediates global changes in gene expression, shifting from rapid growth to stress survival by linking envelope stress, the stringent response and the catabolite repression systems. Usually binds in the 5'-UTR; binding at or near the Shine-Dalgarno sequence prevents ribosome-binding, repressing translation, binding elsewhere in the 5'-UTR can activate translation and/or stabilize the mRNA. Its function is antagonized by small RNA(s). (61 aa) | ||||
exbB | Uptake of enterochelin; Involved in the TonB-dependent energy-dependent transport of various receptor-bound substrates. Protects ExbD from proteolytic degradation and functionally stabilizes TonB (By similarity). (244 aa) | ||||
rpoN | Sigma N factor of RNA polymerase; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is responsible for the expression of enzymes involved in arginine catabolism. The open complex (sigma-54 and core RNA polymerase) serves as the receptor for the receipt of the melting signal from the remotely bound activator protein GlnG(NtrC). (477 aa) | ||||
cheZ | Chemotactic response protein; Plays an important role in bacterial chemotaxis signal transduction pathway by accelerating the dephosphorylation of phosphorylated CheY (CheY-P). Acts on free CheY-P. Belongs to the CheZ family. (214 aa) | ||||
gapA | Glyceraldehyde-3-phosphate dehydrogenase A; Catalyzes the oxidative phosphorylation of glyceraldehyde 3- phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG. (331 aa) | ||||
flgL | Hook-filament junction protein; Flagellar biosynthesis protein; flagellar hook-associated protein 3 (HAP3) (hook-filament junctionprotein). (SW:FLGL_SALTY). (317 aa) | ||||
flgK | Hook-filament junction protein 1; Flagellar biosynthesis protein; flagellar hook-associated protein 1 (HAP1). (SW:FLGK_SALTY); Belongs to the flagella basal body rod proteins family. (553 aa) | ||||
flgA | Flagellar biosynthesis protein; Involved in the assembly process of the P-ring formation. It may associate with FlgF on the rod constituting a structure essential for the P-ring assembly or may act as a modulator protein for the P- ring assembly; Belongs to the FlgA family. (219 aa) | ||||
flgM | anti-FliA factor; Responsible for the coupling of flagellin expression to flagellar assembly by preventing expression of the flagellin genes when a component of the middle class of proteins is defective. It negatively regulates flagellar genes by inhibiting the activity of FliA by directly binding to FliA; Belongs to the FlgM family. (97 aa) | ||||
cydB | Similar to E. coli cytochrome d terminal oxidase polypeptide subunit II (AAC73828.1); Blastp hit to AAC73828.1 (379 aa), 92% identity in aa 1 - 379. (379 aa) | ||||
cydA | Similar to E. coli cytochrome d terminal oxidase, polypeptide subunit I (AAC73827.1); Blastp hit to AAC73827.1 (523 aa), 96% identity in aa 2 - 523. (522 aa) | ||||
abrB | Similar to E. coli putative transport protein (AAC73809.1); Blastp hit to AAC73809.1 (363 aa), 80% identity in aa 16 - 361. (348 aa) | ||||
polB | DNA polymerase II; 3'->5' exonuclease; similar to E. coli DNA polymerase II (AAC73171.1); Blastp hit to AAC73171.1 (783 aa), 89% identity in aa 1 - 783. (783 aa) | ||||
rnhA | RNase HI; Endonuclease that specifically degrades the RNA of RNA-DNA hybrids. (155 aa) | ||||
nuoG | NADH dehydrogenase I chain G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity). (910 aa) | ||||
nuoH | NADH dehydrogenase I chain H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (325 aa) | ||||
nuoI | NADH dehydrogenase I chain I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (180 aa) | ||||
fliL | Flagellar biosynthesis; Controls the rotational direction of flagella during chemotaxis; Belongs to the FliL family. (155 aa) | ||||
fliS | Repressor of class 3a and 3b operons (RflA activity); Flagellar biosynthesis; flagellar protein FLIS. (SW:FLIS_SALTY); Belongs to the FliS family. (135 aa) | ||||
fliD | Filament capping protein; Required for the morphogenesis and for the elongation of the flagellar filament by facilitating polymerization of the flagellin monomers at the tip of growing filament. Forms a capping structure, which prevents flagellin subunits (transported through the central channel of the flagellum) from leaking out without polymerization at the distal end; Belongs to the FliD family. (467 aa) | ||||
fliC | Flagellar biosynthesis; Flagellin is the subunit protein which polymerizes to form the filaments of bacterial flagella. (495 aa) | ||||
cheA | Sensory histitine protein kinase; Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. CheA is autophosphorylated; it can transfer its phosphate group to either CheB or CheY. (671 aa) | ||||
cheW | Purine-binding chemotaxis protein; Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. (167 aa) | ||||
cheY | Chemotaxis regulator protein; Involved in the transmission of sensory signals from the chemoreceptors to the flagellar motors. In its active (phosphorylated or acetylated) form, CheY exhibits enhanced binding to a switch component, FliM, at the flagellar motor which induces a change from counterclockwise to clockwise flagellar rotation. Shows autophosphatase activity which is enhanced by CheZ. (129 aa) |