STRINGSTRING
fabA fabA fabH fabH fabD fabD fabF fabF nadE nadE katE katE pykF pykF ribE ribE idnD idnD idnO idnO fbp fbp purA purA psd psd ubiA ubiA aceA aceA katG katG sodA sodA fadA fadA glmU glmU kdtB kdtB mrcA mrcA aroK aroK aroB aroB aroE aroE murA murA mrsA mrsA folB folB pgk pgk aroC aroC fabB fabB folC folC pta pta ackA ackA folE folE STM2175 STM2175 hisC hisC hisD hisD hisG hisG pykA pykA fadD fadD sodC-2 sodC-2 pyrF pyrF yacE yacE nadC nadC mrcB mrcB fabZ fabZ yafH yafH ghmA ghmA cyoE cyoE cyoA cyoA
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
fabABeta-hydroxydecanoyl thioester dehydrase; Necessary for the introduction of cis unsaturation into fatty acids. Catalyzes the dehydration of (3R)-3-hydroxydecanoyl-ACP to E- (2)-decenoyl-ACP and then its isomerization to Z-(3)-decenoyl-ACP. Can catalyze the dehydratase reaction for beta-hydroxyacyl-ACPs with saturated chain lengths up to 16:0, being most active on intermediate chain length. (172 aa)
fabH3-oxoacyl-[acyl-carrier-protein] synthase III; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Catalyzes the first condensation reaction which initiates fatty acid synthesis and may therefore play a role in governing the total rate of fatty acid production. Possesses both acetoacetyl-ACP synthase and acetyl transacylase activities. Its substrate specificity determines the biosynthesis of branched-chain and/or straight-chain of fatty acids; Belongs to the thiolase-like superfamily. FabH family. (317 aa)
fabDMalonyl coA-acyl carrier protein transacylase. (SW:FABD_SALTY); Belongs to the FabD family. (309 aa)
fabF3-oxoacyl-[acyl-carrier-protein] synthase II; Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. (413 aa)
nadENAD synthetase; Catalyzes the ATP-dependent amidation of deamido-NAD to form NAD. Uses ammonia as a nitrogen source. (275 aa)
katECatalase; Serves to protect cells from the toxic effects of hydrogen peroxide. (750 aa)
pykFPyruvate kinase I; Formerly F; fructose stimulated; pyruvate kinase I. (SW:KPY1_SALTY). (470 aa)
ribESimilar to E. coli riboflavin synthase, alpha chain (AAC74734.1); Blastp hit to AAC74734.1 (213 aa), 90% identity in aa 1 - 208. (213 aa)
idnDSimilar to E. coli L-idonate dehydrogenase (AAC77224.1); Blastp hit to AAC77224.1 (343 aa), 82% identity in aa 1 - 343. (343 aa)
idnO5-keto-D-gluconate-5-reductase; Similar to E. coli 5-keto-D-gluconate 5-reductase (AAC77223.1); Blastp hit to AAC77223.1 (254 aa), 92% identity in aa 1 - 254; Belongs to the short-chain dehydrogenases/reductases (SDR) family. (254 aa)
fbpSimilar to E. coli fructose-bisphosphatase (AAC77189.1); Blastp hit to AAC77189.1 (332 aa), 97% identity in aa 1 - 332. (332 aa)
purAAdenylosuccinate synthetase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family. (432 aa)
psdPhosphatidylserine decarboxylase; Catalyzes the formation of phosphatidylethanolamine (PtdEtn) from phosphatidylserine (PtdSer). (322 aa)
ubiAP-hydroxybenzoate: octaprenyltransferase; Catalyzes the prenylation of para-hydroxybenzoate (PHB) with an all-trans polyprenyl group. Mediates the second step in the final reaction sequence of ubiquinone-8 (UQ-8) biosynthesis, which is the condensation of the polyisoprenoid side chain with PHB, generating the first membrane-bound Q intermediate 3-octaprenyl-4-hydroxybenzoate. (290 aa)
aceAIsocitrate lyase; Involved in the metabolic adaptation in response to environmental changes. Catalyzes the reversible formation of succinate and glyoxylate from isocitrate, a key step of the glyoxylate cycle, which operates as an anaplerotic route for replenishing the tricarboxylic acid cycle during growth on fatty acid substrates. (434 aa)
katGCatalase; Bifunctional enzyme with both catalase and broad-spectrum peroxidase activity; Belongs to the peroxidase family. Peroxidase/catalase subfamily. (726 aa)
sodASuperoxide dismutase; Destroys superoxide anion radicals which are normally produced within the cells and which are toxic to biological systems; Belongs to the iron/manganese superoxide dismutase family. (206 aa)
fadA3-ketoacyl-CoA thiolase; Catalyzes the final step of fatty acid oxidation in which acetyl-CoA is released and the CoA ester of a fatty acid two carbons shorter is formed. Involved in the aerobic and anaerobic degradation of long-chain fatty acids (By similarity). (387 aa)
glmUN-acetyl glucosamine-1-phosphate uridyltransferase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain. In the C-terminal section; belongs to the transferase hexapeptide repeat family. (456 aa)
kdtBPhosphopantetheine adenylyltransferase; Reversibly transfers an adenylyl group from ATP to 4'- phosphopantetheine, yielding dephospho-CoA (dPCoA) and pyrophosphate. Belongs to the bacterial CoaD family. (159 aa)
mrcASimilar to E. coli peptidoglycan synthetase; penicillin-binding protein 1A (AAC76421.1); Blastp hit to AAC76421.1 (858 aa), 92% identity in aa 1 - 858. (858 aa)
aroKShikimate kinase I; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family. (173 aa)
aroBDehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ); Belongs to the sugar phosphate cyclases superfamily. Dehydroquinate synthase family. (362 aa)
aroEDehydroshikimate reductase; Involved in the biosynthesis of the chorismate, which leads to the biosynthesis of aromatic amino acids. Catalyzes the reversible NADPH linked reduction of 3-dehydroshikimate (DHSA) to yield shikimate (SA). (272 aa)
murAUDP-N-acetylglucosamine 1-carboxyvinyltransferase; Cell wall formation. Adds enolpyruvyl to UDP-N- acetylglucosamine; Belongs to the EPSP synthase family. MurA subfamily. (419 aa)
mrsAPhosphoglucosamine mutase; Catalyzes the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate; Belongs to the phosphohexose mutase family. (445 aa)
folBDihydroneopterin aldolase; Catalyzes the conversion of 7,8-dihydroneopterin to 6- hydroxymethyl-7,8-dihydropterin. (120 aa)
pgkSimilar to E. coli phosphoglycerate kinase (AAC75963.1); Blastp hit to AAC75963.1 (387 aa), 97% identity in aa 1 - 387. (387 aa)
aroCChorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system. (361 aa)
fabBSimilar to E. coli 3-oxoacyl-[acyl-carrier-protein] synthase I (AAC75383.1); Blastp hit to AAC75383.1 (406 aa), 96% identity in aa 1 - 404; Belongs to the thiolase-like superfamily. Beta-ketoacyl-ACP synthases family. (404 aa)
folCFolylpolyglutamate synthase; Functions in two distinct reactions of the de novo folate biosynthetic pathway. Catalyzes the addition of a glutamate residue to dihydropteroate (7,8-dihydropteroate or H2Pte) to form dihydrofolate (7,8-dihydrofolate monoglutamate or H2Pte-Glu). Also catalyzes successive additions of L-glutamate to tetrahydrofolate or 10- formyltetrahydrofolate or 5,10-methylenetetrahydrofolate, leading to folylpolyglutamate derivatives. (422 aa)
ptaPhosphotransacetylase; Involved in acetate metabolism. Catalyzes the reversible interconversion of acetyl-CoA and acetyl phosphate. The direction of the overall reaction changes depending on growth conditions. Required for acetate recapture but not for acetate excretion when this organism is grown on ethanolamine; In the N-terminal section; belongs to the CobB/CobQ family. (714 aa)
ackAAcetate kinase A; Catalyzes the formation of acetyl phosphate from acetate and ATP. Can also catalyze the reverse reaction. Has broad substrate specificity and can also utilize GTP, UTP and CTP. Can also phosphorylate propionate, but has very low activity with formate and is inactive with butyrate; Belongs to the acetokinase family. (400 aa)
folESimilar to E. coli GTP cyclohydrolase I (AAC75214.1); Blastp hit to AAC75214.1 (222 aa), 96% identity in aa 1 - 221. (222 aa)
STM2175Putative monooxygenase; Similar to E. coli 3-(3-hydroxyphenyl)propionate hydroxylase (AAC73450.1); Blastp hit to AAC73450.1 (554 aa), 25% identity in aa 12 - 342. (397 aa)
hisCHistidinol-phosphate aminotransferase. (SW:HIS8_SALTY); Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. Histidinol-phosphate aminotransferase subfamily. (359 aa)
hisDHistidinal dehydrogenase; Catalyzes the sequential NAD-dependent oxidations of L- histidinol to L-histidinaldehyde and then to L-histidine. (434 aa)
hisGATP phosphoribosyltransferase; Catalyzes the condensation of ATP and 5-phosphoribose 1- diphosphate to form N'-(5'-phosphoribosyl)-ATP (PR-ATP). Has a crucial role in the pathway because the rate of histidine biosynthesis seems to be controlled primarily by regulation of HisG enzymatic activity (By similarity); Belongs to the ATP phosphoribosyltransferase family. Long subfamily. (299 aa)
pykAPyruvate kinase II; Glucose stimulated; similar to E. coli pyruvate kinase II, glucose stimulated (AAC74924.1); Blastp hit to AAC74924.1 (480 aa), 98% identity in aa 1 - 480. (480 aa)
fadDacyl-CoA synthetase; Catalyzes the esterification, concomitant with transport, of exogenous long-chain fatty acids into metabolically active CoA thioesters for subsequent degradation or incorporation into phospholipids; Belongs to the ATP-dependent AMP-binding enzyme family. (561 aa)
sodC-2Copper/zinc superoxide dismutase; Destroys radicals which are normally produced within the cells and which are toxic to biological systems; Belongs to the Cu-Zn superoxide dismutase family. (173 aa)
pyrFOrotidine-5'-phosphate decarboxylase; Catalyzes the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP); Belongs to the OMP decarboxylase family. Type 1 subfamily. (245 aa)
yacEPutative nucleotide kinase; Catalyzes the phosphorylation of the 3'-hydroxyl group of dephosphocoenzyme A to form coenzyme A; Belongs to the CoaE family. (206 aa)
nadCQuinolinate phosphoribosyltransferase; Involved in the catabolism of quinolinic acid (QA). Belongs to the NadC/ModD family. (297 aa)
mrcBTranspeptidase of penicillin-binding protein 1b; Cell wall formation. Synthesis of cross-linked peptidoglycan from the lipid intermediates. The enzyme has a penicillin-insensitive transglycosylase N-terminal domain (formation of linear glycan strands) and a penicillin-sensitive transpeptidase C-terminal domain (cross- linking of the peptide subunits). (840 aa)
fabZ(3R)-hydroxymyristol acyl carrier protein dehydratase; Involved in unsaturated fatty acids biosynthesis. Catalyzes the dehydration of short chain beta-hydroxyacyl-ACPs and long chain saturated and unsaturated beta-hydroxyacyl-ACPs (By similarity). (151 aa)
yafHPutative acyl-CoA dehydrogenase; Catalyzes the dehydrogenation of acyl-coenzymes A (acyl-CoAs) to 2-enoyl-CoAs, the first step of the beta-oxidation cycle of fatty acid degradation. Is required for S.typhimurium to utilize medium- and long-chain fatty acids as sole carbon sources for growth. Is needed for bacterial survival during carbone-source starvation. (814 aa)
ghmAPhosphoheptose isomerase; Catalyzes the isomerization of sedoheptulose 7-phosphate in D-glycero-D-manno-heptose 7-phosphate; Belongs to the SIS family. GmhA subfamily. (192 aa)
cyoEProtohaeme IX farnesyltransferase (haeme O biosynthesis); Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group. (296 aa)
cyoASimilar to E. coli cytochrome o ubiquinol oxidase subunit II (AAC73535.1); Blastp hit to AAC73535.1 (315 aa), 95% identity in aa 1 - 315. (318 aa)
Your Current Organism:
Salmonella enterica Typhimurium
NCBI taxonomy Id: 99287
Other names: S. enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium LT2, Salmonella enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2-LTL2, Salmonella typhimurium LT2
Server load: low (26%) [HD]