STRINGSTRING
phoP phoP rpsB rpsB hupB hupB htpG htpG ahpC ahpC sdhA sdhA sucD sucD rpsA rpsA ompA ompA fabD fabD rplT rplT sodC-2 sodC-2 ruvA ruvA gyrA gyrA trxC trxC clpB clpB rpsP rpsP grpE grpE recA recA infB infB mdh mdh rpsD rpsD rpsE rpsE rpsH rpsH rplN rplN rpsC rpsC rpsS rpsS rplD rplD rpsG rpsG rpsL rpsL gyrB gyrB dnaA dnaA fadA fadA sodA sodA katG katG rplI rplI
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
phoPResponse regulator in two-component regulatory system with PhoQ; Member of the two-component regulatory system PhoP/PhoQ which regulates the expression of genes involved in virulence, adaptation to acidic and low Mg(2+) environments and resistance to host defense antimicrobial peptides. Essential for intramacrophage survival of S.typhimurium. In low periplasmic Mg(2+), PhoQ phosphorylates PhoP, resulting in the expression of PhoP-activated genes (PAG) and repression of PhoP-repressed genes (PRG). In high periplasmic Mg(2+), PhoQ dephosphorylates phospho-PhoP, resulting in the repressio [...] (224 aa)
rpsBSimilar to E. coli 30S ribosomal subunit protein S2 (AAC73280.1); Blastp hit to AAC73280.1 (241 aa), 97% identity in aa 1 - 241; Belongs to the universal ribosomal protein uS2 family. (241 aa)
hupBDNA-binding protein HU-beta, NS1 (HU-1); Histone-like DNA-binding protein which is capable of wrapping DNA to stabilize it, and thus to prevent its denaturation under extreme environmental conditions; Belongs to the bacterial histone-like protein family. (90 aa)
htpGChaperone Hsp90, heat shock protein C 62.5; Molecular chaperone. Has ATPase activity. (632 aa)
ahpCAlkyl hydroperoxide reductase, C22 subunit; Thiol-specific peroxidase that catalyzes the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively. Plays a role in cell protection against oxidative stress by detoxifying peroxides; Belongs to the peroxiredoxin family. AhpC/Prx1 subfamily. (187 aa)
sdhASuccinate dehydrogenase, flavoprotein subunit; Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily. (588 aa)
sucDsuccinyl-CoA synthetase, alpha subunit; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit. (289 aa)
rpsA30S ribosomal subunit protein S1; Binds mRNA; thus facilitating recognition of the initiation point. It is needed to translate mRNA with a short Shine-Dalgarno (SD) purine-rich sequence. (557 aa)
ompAPutative membrane component hydrogenase; With TolR probably plays a role in maintaining the position of the peptidoglycan cell wall in the periplasm. Acts as a porin with low permeability that allows slow penetration of small solutes; an internal gate slows down solute passage. (350 aa)
fabDMalonyl coA-acyl carrier protein transacylase. (SW:FABD_SALTY); Belongs to the FabD family. (309 aa)
rplT50S ribosomal subunit protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit (By similarity). (118 aa)
sodC-2Copper/zinc superoxide dismutase; Destroys radicals which are normally produced within the cells and which are toxic to biological systems; Belongs to the Cu-Zn superoxide dismutase family. (173 aa)
ruvAHolliday junction helicase subunit A; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB. (203 aa)
gyrADNA gyrase, subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state, and also catalyzes the interconversion of other topological isomers of double-stranded DNA rings, including catenanes and knotted rings. Replenishes negative supercoiling downstream of highly transcribed genes to help control overall chromosomal supercoiling density. E.coli makes 15% more negative supercoils in pBR322 plasmid DNA than S.typhimurium; the S.typhimurium GyrB s [...] (878 aa)
trxCSimilar to E. coli putative thioredoxin-like protein (AAC75635.1); Blastp hit to AAC75635.1 (139 aa), 94% identity in aa 1 - 139; Belongs to the thioredoxin family. (139 aa)
clpBATP-dependent protease; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK (By similarity). Required for colonization of the gastroi [...] (857 aa)
rpsP30S ribosomal subunit protein S16; In addition to being a ribosomal protein, S16 also has a cation-dependent endonuclease activity. (82 aa)
grpEMolecular chaparone; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-depe [...] (196 aa)
recADNA strand exchange and recombination protein; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage. (353 aa)
infBProtein chain initiation factor IF-2; One of the essential components for the initiation of protein synthesis. Protects formylmethionyl-tRNA from spontaneous hydrolysis and promotes its binding to the 30S ribosomal subunits. Also involved in the hydrolysis of GTP during the formation of the 70S ribosomal complex (By similarity). (892 aa)
mdhMalate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate. (312 aa)
rpsD30S ribosomal subunit protein S4; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the body of the 30S subunit. (206 aa)
rpsE30S ribosomal subunit protein S5; With S4 and S12 plays an important role in translational accuracy. Many suppressors of streptomycin-dependent mutants of protein S12 are found in this protein, some but not all of which decrease translational accuracy (ram, ribosomal ambiguity mutations). (167 aa)
rpsH30S ribosomal subunit protein S8, and regulator; One of the primary rRNA binding proteins, it binds directly to 16S rRNA central domain where it helps coordinate assembly of the platform of the 30S subunit; Belongs to the universal ribosomal protein uS8 family. (130 aa)
rplN50S ribosomal subunit protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family. (123 aa)
rpsC30S ribosomal subunit protein S3; Binds the lower part of the 30S subunit head. Binds mRNA in the 70S ribosome, positioning it for translation (By similarity). Belongs to the universal ribosomal protein uS3 family. (233 aa)
rpsS30S ribosomal subunit protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA. (92 aa)
rplD50S ribosomal subunit protein L4; One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity). Forms part of the polypeptide exit tunnel. Belongs to the universal ribosomal protein uL4 family. (201 aa)
rpsG30S ribosomal subunit protein S7; One of the primary rRNA binding proteins, it binds directly to 16S rRNA where it nucleates assembly of the head domain of the 30S subunit. Is located at the subunit interface close to the decoding center, probably blocks exit of the E-site tRNA; Belongs to the universal ribosomal protein uS7 family. (156 aa)
rpsL30S ribosomal subunit protein S12; With S4 and S5 plays an important role in translational accuracy. (124 aa)
gyrBDNA gyrase, subunit B; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state, and also catalyzes the interconversion of other topological isomers of double-stranded DNA rings, including catenanes and knotted rings. Replenishes negative supercoiling downstream of highly transcribed genes to help control overall chromosomal supercoiling density. E.coli makes 15% more negative supercoils in pBR322 plasmid DNA than S.typhimurium; the S.typhimurium GyrB s [...] (804 aa)
dnaADNA replication initiator protein; Plays an important role in the initiation and regulation of chromosomal replication. Binds to the origin of replication; it binds specifically double-stranded DNA at a 9 bp consensus (dnaA box): 5'- TTATC[CA]A[CA]A-3'. DnaA binds to ATP and to acidic phospholipids. DnaA can inhibit its own gene expression as well as that of other genes (By similarity). (466 aa)
fadA3-ketoacyl-CoA thiolase; Catalyzes the final step of fatty acid oxidation in which acetyl-CoA is released and the CoA ester of a fatty acid two carbons shorter is formed. Involved in the aerobic and anaerobic degradation of long-chain fatty acids (By similarity). (387 aa)
sodASuperoxide dismutase; Destroys superoxide anion radicals which are normally produced within the cells and which are toxic to biological systems; Belongs to the iron/manganese superoxide dismutase family. (206 aa)
katGCatalase; Bifunctional enzyme with both catalase and broad-spectrum peroxidase activity; Belongs to the peroxidase family. Peroxidase/catalase subfamily. (726 aa)
rplI50S ribosomal subunit protein L9; Binds to the 23S rRNA. (149 aa)
Your Current Organism:
Salmonella enterica Typhimurium
NCBI taxonomy Id: 99287
Other names: S. enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium LT2, Salmonella enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2-LTL2, Salmonella typhimurium LT2
Server load: low (16%) [HD]