node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
cspA | dnaJ | STM3649 | STM0013 | Major cold shock protein 7.4; Binds to and stimulates the transcription of the CCAAT- containing, cold-shock-inducible promoters of the H-NS and GyrA proteins. Binds also to the inverted repeat 5'-ATTGG-3' (By similarity). | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.446 |
cspA | dnaK | STM3649 | STM0012 | Major cold shock protein 7.4; Binds to and stimulates the transcription of the CCAAT- containing, cold-shock-inducible promoters of the H-NS and GyrA proteins. Binds also to the inverted repeat 5'-ATTGG-3' (By similarity). | Chaperone Hsp70; Acts as a chaperone. | 0.717 |
cspA | grpE | STM3649 | STM2681 | Major cold shock protein 7.4; Binds to and stimulates the transcription of the CCAAT- containing, cold-shock-inducible promoters of the H-NS and GyrA proteins. Binds also to the inverted repeat 5'-ATTGG-3' (By similarity). | Molecular chaparone; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-depe [...] | 0.411 |
cspA | mopB | STM3649 | STM4329 | Major cold shock protein 7.4; Binds to and stimulates the transcription of the CCAAT- containing, cold-shock-inducible promoters of the H-NS and GyrA proteins. Binds also to the inverted repeat 5'-ATTGG-3' (By similarity). | Chaperone Hsp10; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. | 0.414 |
dnaJ | cspA | STM0013 | STM3649 | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Major cold shock protein 7.4; Binds to and stimulates the transcription of the CCAAT- containing, cold-shock-inducible promoters of the H-NS and GyrA proteins. Binds also to the inverted repeat 5'-ATTGG-3' (By similarity). | 0.446 |
dnaJ | dnaK | STM0013 | STM0012 | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Chaperone Hsp70; Acts as a chaperone. | 0.999 |
dnaJ | grpE | STM0013 | STM2681 | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Molecular chaparone; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-depe [...] | 0.998 |
dnaJ | mopA | STM0013 | STM4330 | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Chaperone Hsp60 with peptide-dependent ATPase activity; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.991 |
dnaJ | mopB | STM0013 | STM4329 | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Chaperone Hsp10; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. | 0.984 |
dnaJ | yrfI | STM0013 | STM3498 | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Heat shock protein 33; Redox regulated molecular chaperone. Protects both thermally unfolding and oxidatively damaged proteins from irreversible aggregation. Plays an important role in the bacterial defense system toward oxidative stress. | 0.863 |
dnaK | cspA | STM0012 | STM3649 | Chaperone Hsp70; Acts as a chaperone. | Major cold shock protein 7.4; Binds to and stimulates the transcription of the CCAAT- containing, cold-shock-inducible promoters of the H-NS and GyrA proteins. Binds also to the inverted repeat 5'-ATTGG-3' (By similarity). | 0.717 |
dnaK | dnaJ | STM0012 | STM0013 | Chaperone Hsp70; Acts as a chaperone. | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.999 |
dnaK | gapA | STM0012 | STM1290 | Chaperone Hsp70; Acts as a chaperone. | Glyceraldehyde-3-phosphate dehydrogenase A; Catalyzes the oxidative phosphorylation of glyceraldehyde 3- phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG. | 0.915 |
dnaK | grpE | STM0012 | STM2681 | Chaperone Hsp70; Acts as a chaperone. | Molecular chaparone; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-depe [...] | 0.999 |
dnaK | lepA | STM0012 | STM2583 | Chaperone Hsp70; Acts as a chaperone. | GTP-binding elongation factor; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back-translocation proceeds from a post-translocation (POST) complex to a pre- translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP- dependent manner. | 0.673 |
dnaK | mopA | STM0012 | STM4330 | Chaperone Hsp70; Acts as a chaperone. | Chaperone Hsp60 with peptide-dependent ATPase activity; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.999 |
dnaK | mopB | STM0012 | STM4329 | Chaperone Hsp70; Acts as a chaperone. | Chaperone Hsp10; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. | 0.995 |
dnaK | yrfI | STM0012 | STM3498 | Chaperone Hsp70; Acts as a chaperone. | Heat shock protein 33; Redox regulated molecular chaperone. Protects both thermally unfolding and oxidatively damaged proteins from irreversible aggregation. Plays an important role in the bacterial defense system toward oxidative stress. | 0.852 |
gapA | dnaK | STM1290 | STM0012 | Glyceraldehyde-3-phosphate dehydrogenase A; Catalyzes the oxidative phosphorylation of glyceraldehyde 3- phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG. | Chaperone Hsp70; Acts as a chaperone. | 0.915 |
gapA | mopA | STM1290 | STM4330 | Glyceraldehyde-3-phosphate dehydrogenase A; Catalyzes the oxidative phosphorylation of glyceraldehyde 3- phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG. | Chaperone Hsp60 with peptide-dependent ATPase activity; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. | 0.851 |