Your Input: | |||||
oat | Putative acetylornithine aminotransferase; Catalyzes the aminotransferase reaction from putrescine to 2- oxoglutarate, leading to glutamate and 4-aminobutanal, which spontaneously cyclizes to form 1-pyrroline. This is the first step in one of two pathways for putrescine degradation, where putrescine is converted into 4-aminobutanoate (gamma-aminobutyrate or GABA) via 4- aminobutanal. Also functions as a cadaverine transaminase in a a L- lysine degradation pathway to succinate that proceeds via cadaverine, glutarate and L-2-hydroxyglutarate. (429 aa) | ||||
pnp | Polynucleotide phosphorylase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction. Is a global regulator of virulence and persistency. (711 aa) | ||||
rpoN | Sigma N factor of RNA polymerase; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is responsible for the expression of enzymes involved in arginine catabolism. The open complex (sigma-54 and core RNA polymerase) serves as the receptor for the receipt of the melting signal from the remotely bound activator protein GlnG(NtrC). (477 aa) | ||||
fis | Site-specific DNA inversion stimulation factor; Activates ribosomal RNA transcription. Plays a direct role in upstream activation of rRNA promoters; Belongs to the transcriptional regulatory Fis family. (98 aa) | ||||
rtcA | RNA 3'-terminal phosphate cyclase (with b3419); Catalyzes the conversion of 3'-phosphate to a 2',3'-cyclic phosphodiester at the end of RNA. The mechanism of action of the enzyme occurs in 3 steps: (A) adenylation of the enzyme by ATP; (B) transfer of adenylate to an RNA-N3'P to produce RNA-N3'PP5'A; (C) and attack of the adjacent 2'-hydroxyl on the 3'-phosphorus in the diester linkage to produce the cyclic end product. The biological role of this enzyme is unknown but it is likely to function in some aspects of cellular RNA processing. (339 aa) | ||||
rtcB | Putative cytoplasmic protein; Similar to E. coli orf, hypothetical protein (AAC76446.1); Blastp hit to AAC76446.1 (408 aa), 87% identity in aa 1 - 408. (405 aa) | ||||
rtcR | Sigma N (sigma 54)-dependent regulator of rtcBA expression; EBP family; similar to E. coli putative 2-component regulator (AAC76447.1); Blastp hit to AAC76447.1 (532 aa), 84% identity in aa 1 - 527. (527 aa) | ||||
hupA | DNA-binding protein HU-alpha; Histone-like DNA-binding protein which is capable of wrapping DNA to stabilize it, and thus to prevent its denaturation under extreme environmental conditions; Belongs to the bacterial histone-like protein family. (90 aa) | ||||
lexA | SOS response regulator; Represses a number of genes involved in the response to DNA damage (SOS response), including recA and lexA. Binds to the 16 bp palindromic sequence 5'-CTGTATATATATACAG-3'. In the presence of single- stranded DNA, RecA interacts with LexA causing an autocatalytic cleavage which disrupts the DNA-binding part of LexA, leading to derepression of the SOS regulon and eventually DNA repair. (202 aa) | ||||
polB | DNA polymerase II; 3'->5' exonuclease; similar to E. coli DNA polymerase II (AAC73171.1); Blastp hit to AAC73171.1 (783 aa), 89% identity in aa 1 - 783. (783 aa) | ||||
dinP | DNA polymerase IV; Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII. (351 aa) | ||||
hupB | DNA-binding protein HU-beta, NS1 (HU-1); Histone-like DNA-binding protein which is capable of wrapping DNA to stabilize it, and thus to prevent its denaturation under extreme environmental conditions; Belongs to the bacterial histone-like protein family. (90 aa) | ||||
recR | Putative recombination protein, gap repair; May play a role in DNA repair. It seems to be involved in an RecBC-independent recombinational process of DNA repair. It may act with RecF and RecO. (201 aa) | ||||
uvrB | UvrB with UvrAC is a DNA excision repair enzyme; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA [...] (673 aa) | ||||
ruvA | Holliday junction helicase subunit A; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing. RuvA stimulates, in the presence of DNA, the weak ATPase activity of RuvB. (203 aa) | ||||
uvrC | UvrC; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5' and 3' sides of the lesion. The N-terminal half is responsible for the 3' incision and the C-terminal half is responsible for the 5' incision. (610 aa) | ||||
recO | Gap repair gene; Involved in DNA repair and RecF pathway recombination; Belongs to the RecO family. (242 aa) | ||||
recN | Protein used in recombination and DNA repair; May be involved in recombinational repair of damaged DNA. (553 aa) | ||||
recA | DNA strand exchange and recombination protein; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage. (353 aa) | ||||
rpoS | Sigma S (sigma 38) factor of RNA polymerase; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the master transcriptional regulator of the stationary phase and the general stress response. (330 aa) | ||||
recB | Exonuclease V, beta chain; A helicase/nuclease that prepares dsDNA breaks (DSB) for recombinational DNA repair. Binds to DSBs and unwinds DNA via a highly rapid and processive ATP-dependent bidirectional helicase activity. Unwinds dsDNA until it encounters a Chi (crossover hotspot instigator) sequence from the 3' direction. Cuts ssDNA a few nucleotides 3' to the Chi site. The properties and activities of the enzyme are changed at Chi. The Chi-altered holoenzyme produces a long 3'-ssDNA overhang and facilitates RecA-binding to the ssDNA for homologous DNA recombination and repair. Holoe [...] (1181 aa) | ||||
recC | Exonuclease V, subunit; A helicase/nuclease that prepares dsDNA breaks (DSB) for recombinational DNA repair. Binds to DSBs and unwinds DNA via a highly rapid and processive ATP-dependent bidirectional helicase activity. Unwinds dsDNA until it encounters a Chi (crossover hotspot instigator) sequence from the 3' direction. Cuts ssDNA a few nucleotides 3' to the Chi site. The properties and activities of the enzyme are changed at Chi. The Chi-altered holoenzyme produces a long 3'-ssDNA overhang and facilitates RecA-binding to the ssDNA for homologous DNA recombination and repair. Holoenzy [...] (1123 aa) | ||||
vapC | Putative nucleic acid-binding protein; Toxic component of a type II toxin-antitoxin (TA) system. A site-specific tRNA-(fMet) endonuclease, it cleaves both charged and uncharged tRNA-(fMet) between positions 38 and 39 at the anticodon stem-loop boundary. Does not cleave tRNA(Met), tRNA(Arg2), tRNA(His), tRNA(Leu), tRNA(Phe) tRNA(Thr1), tRNA(Tyr) or tRNA(Val). Overexpression in E.coli inhibits translation, leads to loss of cell growth and degradation of tRNA(fMet), these effects are neutralized by expression of cognate antitoxin VapB. Expression also activates translation initiation at c [...] (132 aa) |