Your Input: | |||||
ompF | Outer membrane protein 1a (ia;b;f), porin; Forms pores that allow passive diffusion of small molecules across the outer membrane. It is also a receptor for the bacteriophage T2 (By similarity). (363 aa) | ||||
ompA | Putative membrane component hydrogenase; With TolR probably plays a role in maintaining the position of the peptidoglycan cell wall in the periplasm. Acts as a porin with low permeability that allows slow penetration of small solutes; an internal gate slows down solute passage. (350 aa) | ||||
ompC | Outer membrane protein 1b (ib;c); Forms pores that allow passive diffusion of small molecules across the outer membrane. (378 aa) | ||||
pgtE | Outer membrane protein E; Protease that can cleave T7 RNA polymerase. Specific for paired basic residues; Belongs to the peptidase A26 family. (312 aa) | ||||
glnE | Adenylyl transferase for glutamine synthetase; Involved in the regulation of glutamine synthetase GlnA, a key enzyme in the process to assimilate ammonia. When cellular nitrogen levels are high, the C-terminal adenylyl transferase (AT) inactivates GlnA by covalent transfer of an adenylyl group from ATP to specific tyrosine residue of GlnA, thus reducing its activity. Conversely, when nitrogen levels are low, the N-terminal adenylyl removase (AR) activates GlnA by removing the adenylyl group by phosphorolysis, increasing its activity. The regulatory region of GlnE binds the signal trans [...] (947 aa) | ||||
rho | Transcription termination factor Rho; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template. (419 aa) | ||||
lamB | Phage lambda receptor protein; Involved in the transport of maltose and maltodextrins. Does not act as a receptor for phages; Belongs to the porin LamB (TC 1.B.3) family. (452 aa) | ||||
acs | acetyl-CoA synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. Acs undergoes a two-step reaction. In the first half reaction, Acs combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA. (652 aa) |