STRINGSTRING
STM2446 STM2446 basS basS basR basR yjdB yjdB lpxD lpxD lpxA lpxA ybiP ybiP udg udg pmrD pmrD lpxC lpxC
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
STM2446Putative iron-dependent peroxidase; Similar to E. coli orf, hypothetical protein (AAC75484.1); Blastp hit to AAC75484.1 (308 aa), 94% identity in aa 10 - 308. (299 aa)
basSSensory kinase in two-component regulatory system with BasR; Member of the two-component regulatory system BasS/BasR. Autophosphorylates and activates BasR by phosphorylation. Plays a role in the adaptation of the organism to the host environment, in particular to neutrophils, and therefore it plays a role in virulence as well. (356 aa)
basRResponse regulator in two-component regulatory system with BasS; Member of the two-component regulatory system BasS/BasR. BasR induces the transcription of the ugd, ais, arnBCADTEF and eptA-basRS loci, all involved in resistance to polymyxin. Represses the transcription of pmrD. Plays a role in the adaptation of the organism to the host environment, in particular to neutrophils, and therefore it plays a role in virulence as well. (222 aa)
yjdBPutative integral membrane protein; Catalyzes the addition of a phosphoethanolamine moiety to the lipid A. The phosphoethanolamine modification is required for resistance to polymyxin; Belongs to the phosphoethanolamine transferase family. EptA subfamily. (547 aa)
lpxDUDP-3-O-(3-hydroxymyristoyl)-glucosamine n-acyltransferase; Catalyzes the N-acylation of UDP-3-O- (hydroxytetradecanoyl)glucosamine using 3-hydroxytetradecanoyl-ACP as the acyl donor. Is involved in the biosynthesis of lipid A, a phosphorylated glycolipid that anchors the lipopolysaccharide to the outer membrane of the cell. (341 aa)
lpxAUDP-N-acetylglucosamine acetyltransferase; Involved in the biosynthesis of lipid A, a phosphorylated glycolipid that anchors the lipopolysaccharide to the outer membrane of the cell. (262 aa)
ybiPPutative integral membrane protein; Similar to E. coli putative enzyme (AAC73902.1); Blastp hit to AAC73902.1 (527 aa), 84% identity in aa 1 - 526. (526 aa)
udgUDP-glucose 6-dehydrogenase. (SW:UDG_SALTY). (388 aa)
pmrDPolymyxin resistance protein B; Interacts with phosphorylated BasR protein to mediate transcriptional induction of BasR-activated genes to induce polymyxin resistance; Belongs to the PmrD family. (85 aa)
lpxCUDP-3-O-acyl N-acetylglucosamine deacetylase; Catalyzes the hydrolysis of UDP-3-O-myristoyl-N- acetylglucosamine to form UDP-3-O-myristoylglucosamine and acetate, the committed step in lipid A biosynthesis; Belongs to the LpxC family. (305 aa)
Your Current Organism:
Salmonella enterica Typhimurium
NCBI taxonomy Id: 99287
Other names: S. enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium LT2, Salmonella enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2-LTL2, Salmonella typhimurium LT2
Server load: low (20%) [HD]