STRINGSTRING
mdh mdh frdA frdA frdB frdB frdC frdC frdD frdD fumB fumB pckA pckA acnA acnA nifJ nifJ fumC fumC fumA fumA orf70 orf70 icdA icdA STM0762 STM0762 STM0761 STM0761 sucD sucD sucC sucC sucB sucB sucA sucA sdhB sdhB sdhA sdhA sdhD sdhD sdhC sdhC gltA gltA acnB acnB lpdA lpdA aceF aceF aceE aceE
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
mdhMalate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate. (312 aa)
frdAFumarate reductase; Anaerobic; flavoprotein subunit; similar to E. coli fumarate reductase, anaerobic, flavoprotein subunit (AAC77114.1); Blastp hit to AAC77114.1 (602 aa), 95% identity in aa 1 - 595. (596 aa)
frdBFumarate reductase; Anaerobic; Fe-S protein subunit; similar to E. coli fumarate reductase, anaerobic, iron-sulfur protein subunit (AAC77113.1); Blastp hit to AAC77113.1 (244 aa), 95% identity in aa 1 - 244; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. (244 aa)
frdCFumarate reductase; Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane. (131 aa)
frdDFumarate reductase; Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane. (119 aa)
fumBFumarase B; Catalyzes the reversible hydration of fumarate to (S)-malate. Belongs to the class-I fumarase family. (548 aa)
pckAPhosphoenolpyruvate carboxykinase; Involved in the gluconeogenesis. Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP) through direct phosphoryl transfer between the nucleoside triphosphate and OAA. (539 aa)
acnAAconitate hydratase 1; Involved in the catabolism of short chain fatty acids (SCFA) via the tricarboxylic acid (TCA)(acetyl degradation route) and the 2- methylcitrate cycle I (propionate degradation route). Catalyzes the reversible isomerization of citrate to isocitrate via cis-aconitate. Also catalyzes the hydration of 2-methyl-cis-aconitate to yield (2R,3S)-2-methylisocitrate. The (2S,3S)-2-methylcitrate (2-MC) is a very poor substrate. The apo form of AcnA functions as a RNA-binding regulatory protein (By similarity). Belongs to the aconitase/IPM isomerase family. (891 aa)
nifJSimilar to E. coli putative oxidoreductase, Fe-S subunit (AAC74460.1); Blastp hit to AAC74460.1 (1174 aa), 92% identity in aa 1 - 1174. (1174 aa)
fumCFumarase C; Involved in the TCA cycle. Catalyzes the stereospecific interconversion of fumarate to L-malate; Belongs to the class-II fumarase/aspartase family. Fumarase subfamily. (467 aa)
fumAFumarase A; Catalyzes the reversible hydration of fumarate to (S)-malate. Functions as an aerobic enzyme in the direction of malate formation as part of the citric acid cycle. Accounts for about 80% of the fumarase activity when the bacteria grow aerobically. To a lesser extent, also displays D-tartrate dehydratase activity in vitro, but is not able to convert (R)-malate, L-tartrate or meso-tartrate. Can also catalyze the isomerization of enol- to keto-oxaloacetate. (548 aa)
orf70Putative cytoplasmic protein; In vitro catalyzes the addition of water to fumarate, forming malate. Cannot catalyze the reverse reaction. Cannot use the cis-isomer maleate as substrate; Belongs to the FumD family. (70 aa)
icdAIsocitrate dehydrogenase in e14 prophage; Specific for NADP+; similar to E. coli isocitrate dehydrogenase, specific for NADP+ (AAC74220.1); Blastp hit to AAC74220.1 (416 aa), 96% identity in aa 1 - 416. (416 aa)
STM0762Similar to E. coli L-tartrate dehydratase, subunit A (AAC76097.1); Blastp hit to AAC76097.1 (303 aa), 29% identity in aa 29 - 287. (281 aa)
STM0761Similar to E. coli fumarase B= fumarate hydratase Class I; anaerobic isozyme (AAC77083.1); Blastp hit to AAC77083.1 (548 aa), 36% identity in aa 361 - 541. (181 aa)
sucDsuccinyl-CoA synthetase, alpha subunit; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit. (289 aa)
sucCsuccinyl-CoA synthetase, beta subunit; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. (388 aa)
sucB2-oxoglutarate dehydrogenase (dihydrolipoyltranssuccinase E2 component); E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). (402 aa)
sucASimilar to E. coli 2-oxoglutarate dehydrogenase (decarboxylase component) (AAC73820.1); Blastp hit to AAC73820.1 (933 aa), 94% identity in aa 1 - 933. (933 aa)
sdhBSuccinate dehydrogenase, Fe-S protein; Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. (239 aa)
sdhASuccinate dehydrogenase, flavoprotein subunit; Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily. (588 aa)
sdhDSuccinate dehydrogenase, hydrophobic subunit; Membrane-anchoring subunit of succinate dehydrogenase (SDH). (115 aa)
sdhCSuccinate dehydrogenase, cytochrome b556; Membrane-anchoring subunit of succinate dehydrogenase (SDH). (129 aa)
gltACitrate synthase. (SW:CISY_SALTY). (427 aa)
acnBAconitate hydratase 2; Involved in the catabolism of short chain fatty acids (SCFA) via the tricarboxylic acid (TCA)(acetyl degradation route) and the 2- methylcitrate cycle I (propionate degradation route). Catalyzes the reversible isomerization of citrate to isocitrate via cis-aconitate. Also catalyzes the hydration of 2-methyl-cis-aconitate to yield (2R,3S)-2-methylisocitrate. The apo form of AcnB functions as a RNA- binding regulatory protein which regulates FliC synthesis via interaction with the ftsH transcript to decrease the intracellular levels of FtsH. The lower levels of Fts [...] (865 aa)
lpdALipoamide dehydrogenase (NADH); Component of 2-oxodehydrogenase and pyruvate complexes; L protein of glycine cleavage complex second part; similar to E. coli lipoamide dehydrogenase (NADH); component of 2-oxodehydrogenase and pyruvate complexes; L-protein of glycine cleavage complex (AAC73227.1); Blastp hit to AAC73227.1 (474 aa), 98% identity in aa 1 - 474. (474 aa)
aceFPyruvate dehydrogenase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (629 aa)
aceEPyruvate dehydrogenase, decarboxylase component; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (887 aa)
Your Current Organism:
Salmonella enterica Typhimurium
NCBI taxonomy Id: 99287
Other names: S. enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium LT2, Salmonella enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2-LTL2, Salmonella typhimurium LT2
Server load: low (30%) [HD]