STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Adh1Alcohol dehydrogenase 1; Belongs to the zinc-containing alcohol dehydrogenase family. Class-I subfamily. (375 aa)    
Predicted Functional Partners:
Cyp2e1
Cytochrome P450 2E1; A cytochrome P450 monooxygenase involved in the metabolism of fatty acids. Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds. Hydroxylates fatty acids specifically at the omega-1 position displaying the highest catalytic activity for saturated fatty acids. May be involved in the oxidative metabolism of xenobiotics.
  
 
 0.979
Aldh1a1
Retinal dehydrogenase 1; Can convert/oxidize retinaldehyde to retinoic acid. Binds free retinal and cellular retinol-binding protein-bound retinal (By similarity). May have a broader specificity and oxidize other aldehydes in vivo (By similarity).
  
 0.970
Aldh1a7
Aldehyde dehydrogenase, cytosolic 1; Can oxidize benzaldehyde, propionaldehyde and acetaldehyde (By similarity). No detectable activity with retinal.
  
 0.959
Aldh1a2
Retinal dehydrogenase 2; Converts retinaldehyde to retinoic acid. Recognizes as substrates free retinal and cellular retinol-binding protein-bound retinal (By similarity). Lacks activity with benzaldehyde, acetaldehyde and octanal. Displays complete lack of activity with citral (By similarity).
 
 0.959
Aldh3a1
Aldehyde dehydrogenase, dimeric NADP-preferring; ALDHs play a major role in the detoxification of alcohol- derived acetaldehyde (Probable). They are involved in the metabolism of corticosteroids, biogenic amines, neurotransmitters, and lipid peroxidation (Probable). Oxidizes medium and long chain aldehydes into non-toxic fatty acids. Preferentially oxidizes aromatic aldehyde substrates. Comprises about 50 percent of corneal epithelial soluble proteins. May play a role in preventing corneal damage caused by ultraviolet light.
  
 0.954
Aldh1a3
Aldehyde dehydrogenase family 1 member A3; NAD-dependent aldehyde dehydrogenase that catalyzes the formation of retinoic acid. Has high activity with all-trans retinal, and has much lower in vitro activity with acetaldehyde (By similarity). Required for the biosynthesis of normal levels of retinoic acid in the embryonic ocular and nasal regions; retinoic acid is required for normal embryonic development of the eye and the nasal region.
 
 0.953
Lrat
Lecithin retinol acyltransferase; Transfers the acyl group from the sn-1 position of phosphatidylcholine to all-trans retinol, producing all-trans retinyl esters (By similarity). Retinyl esters are storage forms of vitamin A (By similarity). LRAT plays a critical role in vision (By similarity). It provides the all-trans retinyl ester substrates for the isomerohydrolase which processes the esters into 11-cis-retinol in the retinal pigment epithelium; due to a membrane-associated alcohol dehydrogenase, 11 cis-retinol is oxidized and converted into 11-cis- retinaldehyde which is the chrom [...]
   
 
 0.940
Cyp26a1
Cytochrome P450 26A1; A cytochrome P450 monooxygenase involved in the metabolism of all-trans retinoic acid (atRA), a signaling molecule that binds to retinoic acid receptors and regulates gene transcription. Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (CPR; NADPH- ferrihemoprotein reductase). Catalyzes the hydroxylation of carbon hydrogen bonds of atRA primarily at C-4 and C-18. Has no activity toward 9-cis and 13-cis retinoic acid st [...]
  
 
 0.938
Aox3
Aldehyde oxidase 3; Oxidase with broad substrate specificity, oxidizing aromatic azaheterocycles, such as N1-methylnicotinamide and phthalazine, as well as aldehydes, such as benzaldehyde, retinal and pyridoxal. Plays a key role in the metabolism of xenobiotics and drugs containing aromatic azaheterocyclic substituents. Is probably involved in the regulation of reactive oxygen species homeostasis. May be a prominent source of superoxide generation via the one-electron reduction of molecular oxygen. Also may catalyze nitric oxide (NO) production via the reduction of nitrite to NO with N [...]
   
 
 0.936
Maob
Amine oxidase [flavin-containing] B; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOB preferentially degrades benzylamine and phenylethylamine (By similarity).
   
 
 0.935
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: medium (78%) [HD]