node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
Cacybp | Fkbp3 | ENSMUSP00000014370 | ENSMUSP00000021332 | Calcyclin-binding protein; May be involved in calcium-dependent ubiquitination and subsequent proteasomal degradation of target proteins. Probably serves as a molecular bridge in ubiquitin E3 complexes. Participates in the ubiquitin-mediated degradation of beta-catenin (CTNNB1) (By similarity). | Peptidyl-prolyl cis-trans isomerase FKBP3; FK506- and rapamycin-binding proteins (FKBPs) constitute a family of receptors for the two immunosuppressants which inhibit T-cell proliferation by arresting two distinct cytoplasmic signal transmission pathways. PPIases accelerate the folding of proteins (By similarity). | 0.612 |
Fkbp3 | Cacybp | ENSMUSP00000021332 | ENSMUSP00000014370 | Peptidyl-prolyl cis-trans isomerase FKBP3; FK506- and rapamycin-binding proteins (FKBPs) constitute a family of receptors for the two immunosuppressants which inhibit T-cell proliferation by arresting two distinct cytoplasmic signal transmission pathways. PPIases accelerate the folding of proteins (By similarity). | Calcyclin-binding protein; May be involved in calcium-dependent ubiquitination and subsequent proteasomal degradation of target proteins. Probably serves as a molecular bridge in ubiquitin E3 complexes. Participates in the ubiquitin-mediated degradation of beta-catenin (CTNNB1) (By similarity). | 0.612 |
Fkbp3 | Hdac1 | ENSMUSP00000021332 | ENSMUSP00000099657 | Peptidyl-prolyl cis-trans isomerase FKBP3; FK506- and rapamycin-binding proteins (FKBPs) constitute a family of receptors for the two immunosuppressants which inhibit T-cell proliferation by arresting two distinct cytoplasmic signal transmission pathways. PPIases accelerate the folding of proteins (By similarity). | Histone deacetylase 1; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Deacetylates SP proteins, SP1 and SP3, and regulates their function. Component of the BRG1-RB1-HDAC1 complex, which negatively regulates the CREST-mediated transcription in resting neurons. Upon calcium st [...] | 0.695 |
Fkbp3 | Hdac2 | ENSMUSP00000021332 | ENSMUSP00000019911 | Peptidyl-prolyl cis-trans isomerase FKBP3; FK506- and rapamycin-binding proteins (FKBPs) constitute a family of receptors for the two immunosuppressants which inhibit T-cell proliferation by arresting two distinct cytoplasmic signal transmission pathways. PPIases accelerate the folding of proteins (By similarity). | Histone deacetylase 2; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). Forms transcriptional repressor complexes by associating with MAD, SIN3, YY1 and N-COR. Interacts in the late S-phase of DNA-replication with DNMT1 in the other transcriptional repressor co [...] | 0.683 |
Fkbp3 | Mtor | ENSMUSP00000021332 | ENSMUSP00000099510 | Peptidyl-prolyl cis-trans isomerase FKBP3; FK506- and rapamycin-binding proteins (FKBPs) constitute a family of receptors for the two immunosuppressants which inhibit T-cell proliferation by arresting two distinct cytoplasmic signal transmission pathways. PPIases accelerate the folding of proteins (By similarity). | Serine/threonine-protein kinase mTOR; Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals. MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins. Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2). Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis (By similarity). This includes phosph [...] | 0.791 |
Fkbp3 | Ppp3ca | ENSMUSP00000021332 | ENSMUSP00000053101 | Peptidyl-prolyl cis-trans isomerase FKBP3; FK506- and rapamycin-binding proteins (FKBPs) constitute a family of receptors for the two immunosuppressants which inhibit T-cell proliferation by arresting two distinct cytoplasmic signal transmission pathways. PPIases accelerate the folding of proteins (By similarity). | Serine/threonine-protein phosphatase 2B catalytic subunit alpha isoform; Calcium-dependent, calmodulin-stimulated protein phosphatase which plays an essential role in the transduction of intracellular Ca(2+)-mediated signals. Many of the substrates contain a PxIxIT motif and/or a LxVP motif (By similarity). In response to increased Ca(2+) levels, dephosphorylates and activates phosphatase SSH1 which results in cofilin dephosphorylation (By similarity). In response to increased Ca(2+) levels following mitochondrial depolarization, dephosphorylates DNM1L inducing DNM1L translocation to t [...] | 0.610 |
Fkbp3 | Ppp3cb | ENSMUSP00000021332 | ENSMUSP00000125722 | Peptidyl-prolyl cis-trans isomerase FKBP3; FK506- and rapamycin-binding proteins (FKBPs) constitute a family of receptors for the two immunosuppressants which inhibit T-cell proliferation by arresting two distinct cytoplasmic signal transmission pathways. PPIases accelerate the folding of proteins (By similarity). | Serine/threonine-protein phosphatase 2B catalytic subunit beta isoform; Calcium-dependent, calmodulin-stimulated protein phosphatase which plays an essential role in the transduction of intracellular Ca(2+)-mediated signals. Dephosphorylates and activates transcription factor NFATC1. Dephosphorylates and inactivates transcription factor ELK1. Dephosphorylates DARPP32; Belongs to the PPP phosphatase family. PP-2B subfamily. | 0.611 |
Fkbp3 | Ppp3cc | ENSMUSP00000021332 | ENSMUSP00000077532 | Peptidyl-prolyl cis-trans isomerase FKBP3; FK506- and rapamycin-binding proteins (FKBPs) constitute a family of receptors for the two immunosuppressants which inhibit T-cell proliferation by arresting two distinct cytoplasmic signal transmission pathways. PPIases accelerate the folding of proteins (By similarity). | Serine/threonine-protein phosphatase 2B catalytic subunit gamma isoform; Calcium-dependent, calmodulin-stimulated protein phosphatase which plays an essential role in the transduction of intracellular Ca(2+)-mediated signals. Dephosphorylates and activates transcription factor NFATC1. Dephosphorylates and inactivates transcription factor ELK1. Dephosphorylates DARPP32. | 0.607 |
Fkbp3 | Ppp3r1 | ENSMUSP00000021332 | ENSMUSP00000099944 | Peptidyl-prolyl cis-trans isomerase FKBP3; FK506- and rapamycin-binding proteins (FKBPs) constitute a family of receptors for the two immunosuppressants which inhibit T-cell proliferation by arresting two distinct cytoplasmic signal transmission pathways. PPIases accelerate the folding of proteins (By similarity). | Calcineurin subunit B type 1; Regulatory subunit of calcineurin, a calcium-dependent, calmodulin stimulated protein phosphatase. Confers calcium sensitivity. | 0.786 |
Fkbp3 | Rack1 | ENSMUSP00000021332 | ENSMUSP00000020640 | Peptidyl-prolyl cis-trans isomerase FKBP3; FK506- and rapamycin-binding proteins (FKBPs) constitute a family of receptors for the two immunosuppressants which inhibit T-cell proliferation by arresting two distinct cytoplasmic signal transmission pathways. PPIases accelerate the folding of proteins (By similarity). | Receptor of activated protein C kinase 1, N-terminally processed; Scaffolding protein involved in the recruitment, assembly and/or regulation of a variety of signaling molecules. Interacts with a wide variety of proteins and plays a role in many cellular processes. Component of the 40S ribosomal subunit involved in translational repression. Involved in the initiation of the ribosome quality control (RQC), a pathway that takes place when a ribosome has stalled during translation, by promoting ubiquitination of a subset of 40S ribosomal subunits (By similarity). Binds to and stabilizes a [...] | 0.637 |
Fkbp3 | Rps15 | ENSMUSP00000021332 | ENSMUSP00000069004 | Peptidyl-prolyl cis-trans isomerase FKBP3; FK506- and rapamycin-binding proteins (FKBPs) constitute a family of receptors for the two immunosuppressants which inhibit T-cell proliferation by arresting two distinct cytoplasmic signal transmission pathways. PPIases accelerate the folding of proteins (By similarity). | 40S ribosomal protein S15; Belongs to the universal ribosomal protein uS19 family. | 0.634 |
Hdac1 | Fkbp3 | ENSMUSP00000099657 | ENSMUSP00000021332 | Histone deacetylase 1; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Deacetylates SP proteins, SP1 and SP3, and regulates their function. Component of the BRG1-RB1-HDAC1 complex, which negatively regulates the CREST-mediated transcription in resting neurons. Upon calcium st [...] | Peptidyl-prolyl cis-trans isomerase FKBP3; FK506- and rapamycin-binding proteins (FKBPs) constitute a family of receptors for the two immunosuppressants which inhibit T-cell proliferation by arresting two distinct cytoplasmic signal transmission pathways. PPIases accelerate the folding of proteins (By similarity). | 0.695 |
Hdac1 | Hdac2 | ENSMUSP00000099657 | ENSMUSP00000019911 | Histone deacetylase 1; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Deacetylates SP proteins, SP1 and SP3, and regulates their function. Component of the BRG1-RB1-HDAC1 complex, which negatively regulates the CREST-mediated transcription in resting neurons. Upon calcium st [...] | Histone deacetylase 2; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). Forms transcriptional repressor complexes by associating with MAD, SIN3, YY1 and N-COR. Interacts in the late S-phase of DNA-replication with DNMT1 in the other transcriptional repressor co [...] | 0.999 |
Hdac1 | Mtor | ENSMUSP00000099657 | ENSMUSP00000099510 | Histone deacetylase 1; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Deacetylates SP proteins, SP1 and SP3, and regulates their function. Component of the BRG1-RB1-HDAC1 complex, which negatively regulates the CREST-mediated transcription in resting neurons. Upon calcium st [...] | Serine/threonine-protein kinase mTOR; Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals. MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins. Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2). Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis (By similarity). This includes phosph [...] | 0.487 |
Hdac2 | Fkbp3 | ENSMUSP00000019911 | ENSMUSP00000021332 | Histone deacetylase 2; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). Forms transcriptional repressor complexes by associating with MAD, SIN3, YY1 and N-COR. Interacts in the late S-phase of DNA-replication with DNMT1 in the other transcriptional repressor co [...] | Peptidyl-prolyl cis-trans isomerase FKBP3; FK506- and rapamycin-binding proteins (FKBPs) constitute a family of receptors for the two immunosuppressants which inhibit T-cell proliferation by arresting two distinct cytoplasmic signal transmission pathways. PPIases accelerate the folding of proteins (By similarity). | 0.683 |
Hdac2 | Hdac1 | ENSMUSP00000019911 | ENSMUSP00000099657 | Histone deacetylase 2; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). Forms transcriptional repressor complexes by associating with MAD, SIN3, YY1 and N-COR. Interacts in the late S-phase of DNA-replication with DNMT1 in the other transcriptional repressor co [...] | Histone deacetylase 1; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Deacetylates SP proteins, SP1 and SP3, and regulates their function. Component of the BRG1-RB1-HDAC1 complex, which negatively regulates the CREST-mediated transcription in resting neurons. Upon calcium st [...] | 0.999 |
Hdac2 | Mtor | ENSMUSP00000019911 | ENSMUSP00000099510 | Histone deacetylase 2; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). Forms transcriptional repressor complexes by associating with MAD, SIN3, YY1 and N-COR. Interacts in the late S-phase of DNA-replication with DNMT1 in the other transcriptional repressor co [...] | Serine/threonine-protein kinase mTOR; Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals. MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins. Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2). Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis (By similarity). This includes phosph [...] | 0.414 |
Mtor | Fkbp3 | ENSMUSP00000099510 | ENSMUSP00000021332 | Serine/threonine-protein kinase mTOR; Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals. MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins. Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2). Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis (By similarity). This includes phosph [...] | Peptidyl-prolyl cis-trans isomerase FKBP3; FK506- and rapamycin-binding proteins (FKBPs) constitute a family of receptors for the two immunosuppressants which inhibit T-cell proliferation by arresting two distinct cytoplasmic signal transmission pathways. PPIases accelerate the folding of proteins (By similarity). | 0.791 |
Mtor | Hdac1 | ENSMUSP00000099510 | ENSMUSP00000099657 | Serine/threonine-protein kinase mTOR; Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals. MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins. Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2). Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis (By similarity). This includes phosph [...] | Histone deacetylase 1; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Deacetylates SP proteins, SP1 and SP3, and regulates their function. Component of the BRG1-RB1-HDAC1 complex, which negatively regulates the CREST-mediated transcription in resting neurons. Upon calcium st [...] | 0.487 |
Mtor | Hdac2 | ENSMUSP00000099510 | ENSMUSP00000019911 | Serine/threonine-protein kinase mTOR; Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals. MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins. Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2). Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis (By similarity). This includes phosph [...] | Histone deacetylase 2; Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). Forms transcriptional repressor complexes by associating with MAD, SIN3, YY1 and N-COR. Interacts in the late S-phase of DNA-replication with DNMT1 in the other transcriptional repressor co [...] | 0.414 |