STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Cybrd1Cytochrome b reductase 1; Ferric-chelate reductase that reduces Fe(3+) to Fe(2+). Present at the brush border of duodenal enterocytes where it probably reduces dietary Fe(3+) thereby facilitating its transport into the mucosal cells. Uses ascorbate as electron donor. May be involved in extracellular ascorbate recycling in erythrocyte membranes. May also act as a ferrireductase in airway epithelial cells. (290 aa)    
Predicted Functional Partners:
Slc11a2
Natural resistance-associated macrophage protein 2; May serve to import iron into the mitochondria (By similarity). Important in metal transport, in particular iron. Involved in apical iron uptake into duodenal enterocytes. Involved in iron transport from acidified endosomes into the cytoplasm of erythroid precursor cells. May play an important role in hepatic iron accumulation and tissue iron distribution.
      
 0.908
Slc40a1
Solute carrier family 40 member 1; May be involved in iron export from duodenal epithelial cell and also in transfer of iron between maternal and fetal circulation. Mediates iron efflux in the presence of a ferroxidase (hephaestin and/or ceruloplasmin).
      
 0.865
Hamp
Hepcidin; Liver-produced hormone that constitutes the main circulating regulator of iron absorption and distribution across tissues. Acts by promoting endocytosis and degradation of ferroportin, leading to the retention of iron in iron-exporting cells and decreased flow of iron into plasma. Controls the major flows of iron into plasma: absorption of dietary iron in the intestine, recycling of iron by macrophages, which phagocytose old erythrocytes and other cells, and mobilization of stored iron from hepatocytes; Belongs to the hepcidin family.
      
 0.856
Heph
Hephaestin; May function as a ferroxidase for ferrous (II) to ferric ion (III) conversion and may be involved in copper transport and homeostasis. Implicated in iron homeostasis and may mediate iron efflux associated to ferroportin 1.
   
  
 0.845
Hamp2
Hepcidin-2; Seems to act as a signaling molecule involved in the maintenance of iron homeostasis.
      
 0.837
Steap3
Metalloreductase STEAP3; Endosomal ferrireductase required for efficient transferrin- dependent iron uptake in erythroid cells. Participates in erythroid iron homeostasis by reducing Fe(3+) to Fe(2+). Also mediates reduction of Cu(2+) to Cu(1+), suggesting that it participates in copper homeostasis. Uses NADP(+) as acceptor. May play a role downstream of p53/TP53 to interface apoptosis and cell cycle progression. Indirectly involved in exosome secretion by facilitating the secretion of proteins such as TCTP; Belongs to the STEAP family.
      
 0.783
Hfe
Hereditary hemochromatosis protein homolog; Binds to transferrin receptor (TFR) and reduces its affinity for iron-loaded transferrin.
   
  
 0.759
Tfrc
Transferrin receptor protein 1; Cellular uptake of iron occurs via receptor-mediated endocytosis of ligand-occupied transferrin receptor into specialized endosomes. Endosomal acidification leads to iron release. The apotransferrin-receptor complex is then recycled to the cell surface with a return to neutral pH and the concomitant loss of affinity of apotransferrin for its receptor. Transferrin receptor is necessary for development of erythrocytes and the nervous system (By similarity). Upon stimulation, positively regulates T and B cell proliferation through iron uptake ; Belongs to t [...]
      
 0.741
Tfr2
Transferrin receptor protein 2; Mediates cellular uptake of transferrin-bound iron in a non- iron dependent manner. May be involved in iron metabolism, hepatocyte function and erythrocyte differentiation; Belongs to the peptidase M28 family. M28B subfamily.
      
 0.733
Slc46a1
Proton-coupled folate transporter; Has been shown to act both as an intestinal proton-coupled high-affinity folate transporter and as an intestinal heme transporter which mediates heme uptake from the gut lumen into duodenal epithelial cells. The iron is then released from heme and may be transported into the bloodstream. Dietary heme iron is an important nutritional source of iron. Shows a higher affinity for folate than heme.
      
 0.707
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: medium (42%) [HD]