STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Dkk3Dickkopf-related protein 3; Antagonizes canonical Wnt signaling by inhibiting LRP5/6 interaction with Wnt and by forming a ternary complex with the transmembrane protein KREMEN that promotes internalization of LRP5/6. DKKs play an important role in vertebrate development, where they locally inhibit Wnt regulated processes such as antero-posterior axial patterning, limb development, somitogenesis and eye formation. In the adult, Dkks are implicated in bone formation and bone disease, cancer and Alzheimer disease (By similarity); Belongs to the dickkopf family. (349 aa)    
Predicted Functional Partners:
Lrp5
Low-density lipoprotein receptor-related protein 5; Acts as a coreceptor with members of the frizzled family of seven-transmembrane spanning receptors to transduce signal by Wnt proteins. Activates the canonical Wnt signaling pathway that controls cell fate determination and self-renewal during embryonic development and adult tissue regeneration. In particular, may play an important role in the development of the posterior patterning of the epiblast during gastrulation. During bone development, regulates osteoblast proliferation and differentiation thus determining bone mass. Mechanist [...]
    
 
 0.926
Dkk2
Dickkopf-related protein 2; Antagonizes canonical Wnt signaling by inhibiting LRP5/6 interaction with Wnt and by forming a ternary complex with the transmembrane protein KREMEN that promotes internalization of LRP5/6. DKKs play an important role in vertebrate development, where they locally inhibit Wnt regulated processes such as antero-posterior axial patterning, limb development, somitogenesis and eye formation. In the adult, Dkks are implicated in bone formation and bone disease, cancer and Alzheimer disease; Belongs to the dickkopf family.
   
  
 0.885
Dkk1
Dickkopf-related protein 1; Antagonizes canonical Wnt signaling by inhibiting LRP5/6 interaction with Wnt and by forming a ternary complex with the transmembrane protein KREMEN that promotes internalization of LRP5/6. Inhibits the pro-apoptotic function of KREMEN1 in a Wnt-independent manner, and has anti-apoptotic activity. Plays a role in limb development; attenuates Wnt signaling in the developing limb to allow normal limb patterning ; Belongs to the dickkopf family.
      
 0.852
Kremen1
Kremen protein 1; Receptor for Dickkopf proteins. Cooperates with DKK1/2 to inhibit Wnt/beta-catenin signaling by promoting the endocytosis of Wnt receptors LRP5 and LRP6. In the absence of DKK1, potentiates Wnt-beta-catenin signaling by maintaining LRP5 or LRP6 at the cell membrane (By similarity). Can trigger apoptosis in a Wnt- independent manner and this apoptotic activity is inhibited upon binding of the ligand DKK1. Plays a role in limb development; attenuates Wnt signaling in the developing limb to allow normal limb patterning and can also negatively regulate bone formation. Mod [...]
    
 
 0.809
Dkk4
Dickkopf-related protein 4; Antagonizes canonical Wnt signaling by inhibiting LRP5/6 interaction with Wnt and by forming a ternary complex with the transmembrane protein KREMEN that promotes internalization of LRP5/6. DKKs play an important role in vertebrate development, where they locally inhibit Wnt regulated processes such as antero-posterior axial patterning, limb development, somitogenesis and eye formation. In the adult, Dkks are implicated in bone formation and bone disease, cancer and Alzheimer disease (By similarity); Belongs to the dickkopf family.
      
 0.766
Sfrp1
Secreted frizzled-related protein 1; Soluble frizzled-related proteins (sFRPS) function as modulators of Wnt signaling through direct interaction with Wnts. They have a role in regulating cell growth and differentiation in specific cell types. SFRP1 decreases intracellular beta-catenin levels (By similarity). Has antiproliferative effects on vascular cells, in vitro and in vivo, and can induce, in vivo, an angiogenic response. In vascular cell cycle, delays the G1 phase and entry into the S phase. In kidney development, inhibits tubule formation and bud growth in metanephroi (By simila [...]
   
  
 0.757
Kremen2
Kremen protein 2; Receptor for Dickkopf proteins. Cooperates with DKK1/2 to inhibit Wnt/beta-catenin signaling by promoting the endocytosis of Wnt receptors LRP5 and LRP6. Plays a role in limb development; attenuates Wnt signaling in the developing limb to allow normal limb patterning and can also negatively regulate bone formation.
    
 
 0.737
Sfrp2
Secreted frizzled-related protein 2; Soluble frizzled-related proteins (sFRPS) function as modulators of Wnt signaling through direct interaction with Wnts. They have a role in regulating cell growth and differentiation in specific cell types. SFRP2 may be important for eye retinal development and for myogenesis.
   
  
 0.730
Wif1
Wnt inhibitory factor 1; Binds to WNT proteins and inhibits their activities. May be involved in mesoderm segmentation.
   
  
 0.725
Sfrp4
Secreted frizzled-related sequence protein 4; Soluble frizzled-related proteins (sFRPS) function as modulators of Wnt signaling through direct interaction with Wnts. They have a role in regulating cell growth and differentiation in specific cell types. SFRP4 plays a role in bone morphogenesis. May also act as a regulator of adult uterine morphology and function. May also increase apoptosis during ovulation possibly through modulation of FZ1/FZ4/WNT4 signaling (By similarity). Has phosphaturic effects by specifically inhibiting sodium-dependent phosphate uptake (By similarity).
   
  
 0.719
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: medium (54%) [HD]