STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Awat2Acyl-CoA wax alcohol acyltransferase 2; Acyltransferase that catalyzes the formation of ester bonds between fatty alcohols and fatty acyl-CoAs to form wax monoesters. Shows a preference for medium chain acyl-CoAs from C12 to C16 in length and fatty alcohols shorter than C20, as the acyl donor and acceptor, respectively. Also possesses acyl-CoA retinol acyltransferase (ARAT) activity that catalyzes 11-cis- specific retinyl ester synthesis. Shows higher catalytic efficiency toward 11-cis-retinol versus 9-cis-retinol, 13- cis-retinol and all-trans-retinol substrates (By similarity). (333 aa)    
Predicted Functional Partners:
Dgat1
Diacylglycerol O-acyltransferase 1; Catalyzes the terminal and only committed step in triacylglycerol synthesis by using diacylglycerol and fatty acyl CoA as substrates. In contrast to DGAT2 it is not essential for survival. May be involved in VLDL (very low density lipoprotein) assembly. In liver, plays a role in esterifying exogenous fatty acids to glycerol. Functions as the major acyl-CoA retinol acyltransferase (ARAT) in the skin, where it acts to maintain retinoid homeostasis and prevent retinoid toxicity leading to skin and hair disorders.
    
 0.962
Cyp26a1
Cytochrome P450 26A1; A cytochrome P450 monooxygenase involved in the metabolism of all-trans retinoic acid (atRA), a signaling molecule that binds to retinoic acid receptors and regulates gene transcription. Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (CPR; NADPH- ferrihemoprotein reductase). Catalyzes the hydroxylation of carbon hydrogen bonds of atRA primarily at C-4 and C-18. Has no activity toward 9-cis and 13-cis retinoic acid st [...]
   
 
 0.908
Rdh11
Retinol dehydrogenase 11; Retinol dehydrogenase with a clear preference for NADP. Displays high activity towards 9- cis, 11-cis and all-trans-retinol, and to a lesser extent on 13-cis- retinol (By similarity). Exhibits also reductive activity towards toxic lipid peroxidation products such as medium-chain aldehydes trans-2-nonenal, nonanal, and cis-6-nonenal. Has no dehydrogenase activity towards steroid. Seems to be required for homeostasis of retinol in liver and testis ; Belongs to the short-chain dehydrogenases/reductases (SDR) family.
   
 
 0.908
Adh1
Alcohol dehydrogenase 1; Belongs to the zinc-containing alcohol dehydrogenase family. Class-I subfamily.
   
 
 0.907
Adh5
Alcohol dehydrogenase class-3; Catalyzes the oxidation of long-chain primary alcohols and the oxidation of S-(hydroxymethyl) glutathione. Also oxidizes long chain omega-hydroxy fatty acids, such as 20-HETE, producing both the intermediate aldehyde, 20-oxoarachidonate and the end product, a dicarboxylic acid, (5Z,8Z,11Z,14Z)-eicosatetraenedioate. Class-III ADH is remarkably ineffective in oxidizing ethanol.
   
 
 0.907
Adh4
All-trans-retinol dehydrogenase [NAD(+)] ADH4; Catalyzes the NAD-dependent oxidation of either all-trans- retinol or 9-cis-retinol (By similarity). Also oxidizes long chain omega-hydroxy fatty acids, such as 20-HETE, producing both the intermediate aldehyde, 20-oxoarachidonate and the end product, a dicarboxylic acid, (5Z,8Z,11Z,14Z)-eicosatetraenedioate. Also catalyzes the reduction of benzoquinones (By similarity); Belongs to the zinc-containing alcohol dehydrogenase family. Class-II subfamily.
   
 
 0.907
Adh7
All-trans-retinol dehydrogenase [NAD(+)] ADH7; Catalyzes the NAD-dependent oxidation of all-trans-retinol, alcohol, aldehyde and omega-hydroxy fatty acids and their derivatives. Oxidizes preferentially all trans-retinol, all-trans-4-hydroxyretinol, 9-cis-retinol, 2-hexenol, and long chain omega-hydroxy fatty acids such as juniperic acid. In vitro can also catalyzes the NADH-dependent reduction of all-trans-retinal and aldehydes and their derivatives. Reduces preferentially all trans-retinal, all-trans-4-oxoretinal and hexanal. Catalyzes in the oxidative direction with higher efficiency [...]
   
 
 0.907
Rdh5
Retinol dehydrogenase 5; Catalyzes the oxidation of cis-isomers of retinol, including 11-cis-, 9-cis-, and 13-cis-retinol in an NAD-dependent manner. Has no activity towards all-trans retinal (By similarity). Plays a significant role in 11-cis retinol oxidation in the retinal pigment epithelium cells (RPE). Also recognizes steroids (androsterone, androstanediol) as its substrates (By similarity). ECO:0000250|UniProtKB:Q92781, ; Belongs to the short-chain dehydrogenases/reductases (SDR) family.
   
 
 0.905
Sdr16c5
Epidermal retinol dehydrogenase 2; Oxidoreductase with strong preference for NAD. Active in both the oxidative and reductive directions. Oxidizes all-trans-retinol in all-trans-retinaldehyde. No activity was detected with 11-cis-retinol or 11-cis-retinaldehyde as substrates with either NAD(+)/NADH or NADP(+)/NADPH (By similarity); Belongs to the short-chain dehydrogenases/reductases (SDR) family.
   
 
 0.905
Dhrs9
Dehydrogenase/reductase SDR family member 9; 3-alpha-hydroxysteroid dehydrogenase that converts 3-alpha- tetrahydroprogesterone (allopregnanolone) to dihydroxyprogesterone and 3-alpha-androstanediol to dihydroxyprogesterone. Plays also a role in the biosynthesis of retinoic acid. Can utilize both NADH and NADPH.
   
 
 0.905
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: low (36%) [HD]