STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Rprd1aRegulation of nuclear pre-mRNA domain-containing protein 1A; Interacts with phosphorylated C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit POLR2A, and participates in dephosphorylation of the CTD by RPAP2. May act as a negative regulator of cyclin-D1 (CCND1) and cyclin-E (CCNE1) in the cell cycle; Belongs to the UPF0400 (RTT103) family. (312 aa)    
Predicted Functional Partners:
Rprd1b
Regulation of nuclear pre-mRNA domain-containing protein 1B; Interacts with phosphorylated C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit POLR2A, and participates in dephosphorylation of the CTD. Transcriptional regulator which enhances expression of CCND1. Promotes binding of RNA polymerase II to the CCDN1 promoter and to the termination region before the poly- A site but decreases its binding after the poly-A site. Prevents RNA polymerase II from reading through the 3' end termination site and may allow it to be recruited back to the promoter thr [...]
  
0.952
Rpap2
Putative RNA polymerase II subunit B1 CTD phosphatase Rpap2; Protein phosphatase that displays CTD phosphatase activity and regulates transcription of snRNA genes. Recognizes and binds phosphorylated 'Ser-7' of the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit POLR2A, and mediates dephosphorylation of 'Ser-5' of the CTD, thereby promoting transcription of snRNA genes; Belongs to the RPAP2 family.
   
 0.930
Polr2a
DNA-directed RNA polymerase II subunit RPB1; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB1 is part of the core element with the central large cl [...]
    
 0.906
Polr2b
DNA-directed RNA polymerase II subunit RPB2; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Second largest component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Proposed to contribute to the polymerase catalytic activity and forms the polymerase active center together with the largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB2 is [...]
   
 0.885
Xrn2
5'-3' exoribonuclease 2; Possesses 5'->3' exoribonuclease activity. May promote the termination of transcription by RNA polymerase II. During transcription termination, cleavage at the polyadenylation site liberates a 5' fragment which is subsequently processed to form the mature mRNA and a 3' fragment which remains attached to the elongating polymerase. The processive degradation of this 3' fragment by this protein may promote termination of transcription. Binds to RNA polymerase II (RNAp II) transcription termination R-loops formed by G-rich pause sites (By similarity); Belongs to th [...]
   
 
 0.880
Dxo
Decapping and exoribonuclease protein; Ribonuclease that specifically degrades pre-mRNAs with a defective 5' end cap and is part of a pre-mRNA capping quality control. Has decapping, pyrophosphohydrolase and 5'-3' exonuclease activities. Has decapping activity toward incomplete 5' end cap mRNAs such as unmethylated 5' end-capped RNA to release GpppN and 5' end monophosphate RNA. The 5' end monophosphate RNA is then degraded by the 5'-3' exoribonuclease activity, enabling this enzyme to decap and degrade incompletely capped mRNAs. Also possesses RNA 5'- pyrophosphohydrolase activity by [...]
    
 
 0.844
Pcf11
PCF11 cleavage and polyadenylation factor subunit.
   
 0.786
Polr2g
DNA-directed RNA polymerase II subunit RPB7; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB7 is part of a subcomplex with RPB4 that binds to a pocket formed by RPB1, RPB2 and RPB6 at the base of the clamp element. The RBP4-RPB7 subcomplex seems [...]
   
 0.781
Rprd2
Regulation of nuclear pre-mRNA domain-containing protein 2.
   
0.759
Polr2d
DNA-directed RNA polymerase II subunit RPB4; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB4 is part of a subcomplex with RPB7 that binds to a pocket formed by RPB1, RPB2 and RPB6 at the base of the clamp element. The RBP4-RPB7 subcomplex seems [...]
   
 0.739
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: low (34%) [HD]