STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Aldh4a1Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial; Irreversible conversion of delta-1-pyrroline-5-carboxylate (P5C), derived either from proline or ornithine, to glutamate. This is a necessary step in the pathway interconnecting the urea and tricarboxylic acid cycles. The preferred substrate is glutamic gamma- semialdehyde, other substrates include succinic, glutaric and adipic semialdehydes (By similarity). (562 aa)    
Predicted Functional Partners:
Prodh
Proline dehydrogenase 1, mitochondrial; Converts proline to delta-1-pyrroline-5-carboxylate.
  
 0.989
Aldh18a1
Delta-1-pyrroline-5-carboxylate synthase; Bifunctional enzyme that converts glutamate to glutamate 5- semialdehyde, an intermediate in the biosynthesis of proline, ornithine and arginine; In the C-terminal section; belongs to the gamma-glutamyl phosphate reductase family.
  
 
 0.984
Prodh2
Hydroxyproline dehydrogenase; Dehydrogenase that converts trans-4-L-hydroxyproline to delta-1-pyrroline-3-hydroxy-5-carboxylate (Hyp) using ubiquinone-10 as the terminal electron acceptor. Can also use proline as a substrate but with a very much lower efficiency. Does not react with other diastereomers of Hyp: trans-4-D-hydroxyproline and cis-4-L- hydroxyproline. Ubiquininone analogs such as menadione, duroquinone and ubiquinone-1 react more efficiently than oxygen as the terminal electron acceptor during catalysis.
  
 0.981
Pycr2
Pyrroline-5-carboxylate reductase 2; Housekeeping enzyme that catalyzes the last step in proline biosynthesis. In some cell types, such as erythrocytes, its primary function may be the generation of NADP(+). Can utilize both NAD and NADP. Has higher affinity for NADP, but higher catalytic efficiency with NADH (By similarity). Involved in cellular response to oxidative stress (By similarity); Belongs to the pyrroline-5-carboxylate reductase family.
   
 0.974
Pycrl
Pyrroline-5-carboxylate reductase 3; Enzyme that catalyzes the last step in proline biosynthesis. Proline is synthesized from either glutamate or ornithine; both are converted to pyrroline-5-carboxylate (P5C), and then to proline via pyrroline-5-carboxylate reductases (PYCRs). PYCRL is exclusively linked to the conversion of ornithine to proline.
   
 0.974
Oat
Ornithine aminotransferase, mitochondrial.
  
 0.974
Pycr1
Pyrroline-5-carboxylate reductase 1, mitochondrial; Housekeeping enzyme that catalyzes the last step in proline biosynthesis. Can utilize both NAD and NADP, but has higher affinity for NAD. Involved in the cellular response to oxidative stress.
   
 0.966
Glud1
Glutamate dehydrogenase 1, mitochondrial; Mitochondrial glutamate dehydrogenase that converts L- glutamate into alpha-ketoglutarate. Plays a key role in glutamine anaplerosis by producing alpha-ketoglutarate, an important intermediate in the tricarboxylic acid cycle. May be involved in learning and memory reactions by increasing the turnover of the excitatory neurotransmitter glutamate; Belongs to the Glu/Leu/Phe/Val dehydrogenases family.
  
 0.963
Got2
Aspartate aminotransferase, mitochondrial; Catalyzes the irreversible transamination of the L-tryptophan metabolite L-kynurenine to form kynurenic acid (KA). Plays a key role in amino acid metabolism. Important for metabolite exchange between mitochondria and cytosol. Facilitates cellular uptake of long-chain free fatty acids.
   
 0.954
Gls2
Glutaminase liver isoform, mitochondrial; Plays an important role in the regulation of glutamine catabolism. Promotes mitochondrial respiration and increases ATP generation in cells by catalyzing the synthesis of glutamate and alpha- ketoglutarate. Increases cellular anti-oxidant function via NADH and glutathione production. May play a role in preventing tumor proliferation.
   
 
 0.949
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: medium (52%) [HD]