STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
PisdPhosphatidylserine decarboxylase proenzyme, mitochondrial; Catalyzes the formation of phosphatidylethanolamine (PtdEtn) from phosphatidylserine (PtdSer). Plays a central role in phospholipid metabolism and in the interorganelle trafficking of phosphatidylserine. Belongs to the phosphatidylserine decarboxylase family. PSD-B subfamily. Eukaryotic type I sub-subfamily. (406 aa)    
Predicted Functional Partners:
Pemt
Phosphatidylethanolamine N-methyltransferase; Catalyzes the three sequential steps of the methylation pathway of phosphatidylcholine biosynthesis, the SAM-dependent methylation of phosphatidylethanolamine (PE) to phosphatidylmonomethylethanolamine (PMME), PMME to phosphatidyldimethylethanolamine (PDME), and PDME to phosphatidylcholine (PC); Belongs to the class VI-like SAM-binding methyltransferase superfamily. PEMT/PEM2 methyltransferase family.
   
 0.977
Ptdss2
Phosphatidylserine synthase 2; Catalyzes a base-exchange reaction in which the polar head group of phosphatidylethanolamine (PE) or phosphatidylcholine (PC) is replaced by L-serine. PTDSS2 is specific for phosphatatidylethanolamine and does not act on phosphatidylcholine; Belongs to the phosphatidyl serine synthase family.
   
 
 0.975
Ptdss1
Phosphatidylserine synthase 1; Catalyzes a base-exchange reaction in which the polar head group of phosphatidylethanolamine (PE) or phosphatidylcholine (PC) is replaced by L-serine. In membranes, PTDSS1 catalyzes mainly the conversion of phosphatidylcholine. Also converts, in vitro and to a lesser extent, phosphatidylethanolamine.
   
 
 0.974
Cept1
Choline/ethanolaminephosphotransferase 1; Catalyzes both phosphatidylcholine and phosphatidylethanolamine biosynthesis from CDP-choline and CDP- ethanolamine, respectively. Involved in protein-dependent process of phospholipid transport to distribute phosphatidyl choline to the lumenal surface. Has a higher cholinephosphotransferase activity than ethanolaminephosphotransferase activity (By similarity); Belongs to the CDP-alcohol phosphatidyltransferase class-I family.
   
 
 0.968
Selenoi
Ethanolaminephosphotransferase 1; Catalyzes phosphatidylethanolamine biosynthesis from CDP- ethanolamine. It thereby plays a central role in the formation and maintenance of vesicular membranes. Involved in the formation of phosphatidylethanolamine via 'Kennedy' pathway (By similarity).
     
 0.959
Mboat2
Lysophospholipid acyltransferase 2; Acyltransferase which mediates the conversion of lysophosphatidylcholine (1-acyl-sn-glycero-3-phosphocholine or LPC) into phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine or PC) (LPCAT activity). To a lesser extent, also catalyzes the acylation of lysophosphatidylethanolamine (1-acyl-sn-glycero-3-phosphoethanolamine or LPE) into phosphatidylethanolamine (1,2-diacyl-sn-glycero-3- phosphoethanolamine or PE) (LPEAT activity). Prefers oleoyl-CoA as the acyl donor. Lysophospholipid acyltransferases (LPLATs) catalyze the reacylation step of the [...]
    
 0.946
Pld1
Phospholipase D1; Implicated as a critical step in numerous cellular pathways, including signal transduction, membrane trafficking, and the regulation of mitosis. May be involved in the regulation of perinuclear intravesicular membrane traffic.
   
 0.935
Pld2
Phospholipase D2; May have a role in signal-induced cytoskeletal regulation and/or endocytosis.
   
 0.924
Pla1a
Phospholipase A1 member A; Hydrolyzes the ester bond at the sn-1 position of glycerophospholipids and produces 2-acyl lysophospholipids. Hydrolyzes phosphatidylserine (PS) in the form of liposomes and 1-acyl-2 lysophosphatidylserine (lyso-PS), but not triolein, phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidic acid (PA) or phosphatidylinositol (PI). Hydrolysis of lyso-PS in peritoneal mast cells activated by receptors for IgE leads to stimulate histamine production (By similarity); Belongs to the AB hydrolase superfamily. Lipase family.
     
 0.923
Lpcat4
Lysophospholipid acyltransferase LPCAT4; Displays acyl-CoA-dependent lysophospholipid acyltransferase activity with a subset of lysophospholipids as substrates; converts lysophosphatidylethanolamine to phosphatidylethanolamine, 1-alkenyl- lysophatidylethanolamine to 1-alkenyl-phosphatidylethanolamine, lysophosphatidylglycerol and alkyl-lysophosphatidylcholine to phosphatidylglycerol and alkyl-phosphatidylcholine, respectively. In contrast, has no lysophosphatidylinositol, glycerol-3-phosphate, diacylglycerol or lysophosphatidic acid acyltransferase activity. Prefers long chain acyl-CoA [...]
    
 0.923
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: low (36%) [HD]