STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Aldh3b1Aldehyde dehydrogenase family 3 member B1; Oxidizes medium and long chain saturated and unsaturated aldehydes. Metabolizes also benzaldehyde (By similarity). Low activity towards acetaldehyde and 3,4- dihydroxyphenylacetaldehyde (By similarity). May not metabolize short chain aldehydes. Can use both NADP(+) and NAD(+) as electron acceptor (By similarity). May have a protective role against the cytotoxicity induced by lipid peroxidation (By similarity). (468 aa)    
Predicted Functional Partners:
Adh4
All-trans-retinol dehydrogenase [NAD(+)] ADH4; Catalyzes the NAD-dependent oxidation of either all-trans- retinol or 9-cis-retinol (By similarity). Also oxidizes long chain omega-hydroxy fatty acids, such as 20-HETE, producing both the intermediate aldehyde, 20-oxoarachidonate and the end product, a dicarboxylic acid, (5Z,8Z,11Z,14Z)-eicosatetraenedioate. Also catalyzes the reduction of benzoquinones (By similarity); Belongs to the zinc-containing alcohol dehydrogenase family. Class-II subfamily.
  
 0.942
Adh7
All-trans-retinol dehydrogenase [NAD(+)] ADH7; Catalyzes the NAD-dependent oxidation of all-trans-retinol, alcohol, aldehyde and omega-hydroxy fatty acids and their derivatives. Oxidizes preferentially all trans-retinol, all-trans-4-hydroxyretinol, 9-cis-retinol, 2-hexenol, and long chain omega-hydroxy fatty acids such as juniperic acid. In vitro can also catalyzes the NADH-dependent reduction of all-trans-retinal and aldehydes and their derivatives. Reduces preferentially all trans-retinal, all-trans-4-oxoretinal and hexanal. Catalyzes in the oxidative direction with higher efficiency [...]
  
 0.940
Adh5
Alcohol dehydrogenase class-3; Catalyzes the oxidation of long-chain primary alcohols and the oxidation of S-(hydroxymethyl) glutathione. Also oxidizes long chain omega-hydroxy fatty acids, such as 20-HETE, producing both the intermediate aldehyde, 20-oxoarachidonate and the end product, a dicarboxylic acid, (5Z,8Z,11Z,14Z)-eicosatetraenedioate. Class-III ADH is remarkably ineffective in oxidizing ethanol.
  
 0.939
Akr1a1
Aldo-keto reductase family 1 member A1; Catalyzes the NADPH-dependent reduction of a wide variety of carbonyl-containing compounds to their corresponding alcohols. Displays enzymatic activity towards endogenous metabolites such as aromatic and aliphatic aldehydes, ketones, monosaccharides and bile acids, with a preference for negatively charged substrates, such as glucuronate and succinic semialdehyde (By similarity). Plays an important role in ascorbic acid biosynthesis by catalyzing the reduction of D-glucuronic acid and D-glucurono-gamma-lactone. Functions as a detoxifiying enzyme b [...]
   
 0.939
Acss1
Acetyl-coenzyme A synthetase 2-like, mitochondrial; Catalyzes the synthesis of acetyl-CoA from short-chain fatty acids. Acetate is the preferred substrate. Can also utilize propionate with a much lower affinity. Provides acetyl-CoA that is utilized mainly for oxidation under ketogenic conditions. Involved in thermogenesis under ketogenic conditions, using acetate as a vital fuel when carbohydrate availability is insufficient.
   
 0.935
Acss2
Acetyl-coenzyme A synthetase, cytoplasmic; Catalyzes the synthesis of acetyl-CoA from short-chain fatty acids. Acetate is the preferred substrate but can also utilize propionate with a much lower affinity ; Belongs to the ATP-dependent AMP-binding enzyme family.
   
 0.931
Abat
4-aminobutyrate aminotransferase, mitochondrial; Catalyzes the conversion of gamma-aminobutyrate and L-beta- aminoisobutyrate to succinate semialdehyde and methylmalonate semialdehyde, respectively. Can also convert delta-aminovalerate and beta-alanine (By similarity).
  
 0.928
Adh1
Alcohol dehydrogenase 1; Belongs to the zinc-containing alcohol dehydrogenase family. Class-I subfamily.
  
 0.926
Maoa
Amine oxidase [flavin-containing] A; Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOA preferentially oxidizes biogenic amines such as 5-hydroxytryptamine (5-HT), norepinephrine and epinephrine (By similarity).
  
 
 0.919
Cyp2e1
Cytochrome P450 2E1; A cytochrome P450 monooxygenase involved in the metabolism of fatty acids. Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds. Hydroxylates fatty acids specifically at the omega-1 position displaying the highest catalytic activity for saturated fatty acids. May be involved in the oxidative metabolism of xenobiotics.
   
 
 0.919
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: low (38%) [HD]