STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Pld45'-3' exonuclease PLD4; 5'->3' DNA exonuclease which digests single-stranded DNA (ssDNA). Regulates inflammatory cytokine responses via the degradation of nucleic acids, by reducing the concentration of ssDNA able to stimulate TLR9, a nucleotide-sensing receptor. Involved in phagocytosis of activated microglia. (503 aa)    
Predicted Functional Partners:
Pld2
Phospholipase D2; May have a role in signal-induced cytoskeletal regulation and/or endocytosis.
   
 
 0.958
Pld1
Phospholipase D1; Implicated as a critical step in numerous cellular pathways, including signal transduction, membrane trafficking, and the regulation of mitosis. May be involved in the regulation of perinuclear intravesicular membrane traffic.
   
 
 0.947
Pld3
5'-3' exonuclease PLD3; 5'->3' DNA exonuclease which digests single-stranded DNA (ssDNA). Regulates inflammatory cytokine responses via the degradation of nucleic acids, by reducing the concentration of ssDNA able to stimulate TLR9, a nucleotide-sensing receptor in collaboration with PLD4. May be important in myotube formation. Plays a role in lysosomal homeostasis. Involved in the regulation of endosomal protein sorting (By similarity).
  
 
0.914
Lpcat3
Lysophospholipid acyltransferase 5; Acyltransferase which mediates the conversion of lysophosphatidylcholine (1-acyl-sn-glycero-3-phosphocholine or LPC) into phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine or PC) (LPCAT activity). To a lesser extent, also catalyzes the acylation of lysophosphatidylethanolamine (1-acyl-sn-glycero-3-phosphoethanolamine or LPE) into phosphatidylethanolamine (1,2-diacyl-sn-glycero-3- phosphoethanolamine or PE) (LPEAT activity), and the conversion of lysophosphatidylserine (1-acyl-2-hydroxy-sn-glycero-3-phospho-L-serine or LPS) into phosphatidyl [...]
     
 0.910
Mboat1
Lysophospholipid acyltransferase 1; Acyltransferase which mediates the conversion of lysophosphatidylethanolamine (1-acyl-sn-glycero-3-phosphoethanolamine or LPE) into phosphatidylethanolamine (1,2-diacyl-sn-glycero-3- phosphoethanolamine or PE) (LPEAT activity). Catalyzes also the acylation of lysophosphatidylserine (1-acyl-2-hydroxy-sn-glycero-3- phospho-L-serine or LPS) into phosphatidylserine (1,2-diacyl-sn- glycero-3-phospho-L-serine or PS) (LPSAT activity). Prefers oleoyl-CoA as the acyl donor. Lysophospholipid acyltransferases (LPLATs) catalyze the reacylation step of the phosph [...]
     
 0.909
Pemt
Phosphatidylethanolamine N-methyltransferase; Catalyzes the three sequential steps of the methylation pathway of phosphatidylcholine biosynthesis, the SAM-dependent methylation of phosphatidylethanolamine (PE) to phosphatidylmonomethylethanolamine (PMME), PMME to phosphatidyldimethylethanolamine (PDME), and PDME to phosphatidylcholine (PC); Belongs to the class VI-like SAM-binding methyltransferase superfamily. PEMT/PEM2 methyltransferase family.
     
 0.909
Plaat3
Phospholipase A and acyltransferase 3; Exhibits both phospholipase A1/2 and acyltransferase activities. Shows phospholipase A1 (PLA1) and A2 (PLA2), catalyzing the calcium-independent release of fatty acids from the sn-1 or sn-2 position of glycerophospholipids. For most substrates, PLA1 activity is much higher than PLA2 activity (By similarity). Shows O-acyltransferase activity, catalyzing the transfer of a fatty acyl group from glycerophospholipid to the hydroxyl group of lysophospholipid (By similarity). Shows N-acyltransferase activity,catalyzing the calcium-independent transfer of [...]
   
 
 0.908
Lcat
Phosphatidylcholine-sterol acyltransferase; Central enzyme in the extracellular metabolism of plasma lipoproteins. Synthesized mainly in the liver and secreted into plasma where it converts cholesterol and phosphatidylcholines (lecithins) to cholesteryl esters and lysophosphatidylcholines on the surface of high and low density lipoproteins (HDLs and LDLs). The cholesterol ester is then transported back to the liver. Also produced in the brain by primary astrocytes, and esterifies free cholesterol on nascent APOE-containing lipoproteins secreted from glia and influences cerebral spinal [...]
   
 
 0.907
Tmem189
Plasmanylethanolamine desaturase; Plasmanylethanolamine desaturase involved in plasmalogen biogenesis in the endoplasmic reticulum membrane. Plasmalogens are glycerophospholipids with a hydrocarbon chain linked by a vinyl ether bond at the glycerol sn-1 position, and are involved in antioxidative and signaling mechanisms; Belongs to the fatty acid desaturase CarF family.
   
 
  0.902
Ptdss1
Phosphatidylserine synthase 1; Catalyzes a base-exchange reaction in which the polar head group of phosphatidylethanolamine (PE) or phosphatidylcholine (PC) is replaced by L-serine. In membranes, PTDSS1 catalyzes mainly the conversion of phosphatidylcholine. Also converts, in vitro and to a lesser extent, phosphatidylethanolamine.
     
  0.900
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: low (28%) [HD]