STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
RetsatAll-trans-retinol 13,14-reductase; Catalyzes the saturation of all-trans-retinol to all-trans- 13,14-dihydroretinol. Does not exhibit any activity toward all-trans- retinoic acid, nor 9-cis, 11-cis or 13-cis-retinol isomers. May play a role in the metabolism of vitamin A. Independently of retinol conversion, may regulate liver metabolism upstream of MLXIPL/ChREBP. Required for adipocyte differentiation in a 3T3-L1 cell culture model. This effect seems not to mimic the in vivo situation in which animals show increased adiposity in the absence of RETSAT. Belongs to the carotenoid/retinoi [...] (609 aa)    
Predicted Functional Partners:
Lrat
Lecithin retinol acyltransferase; Transfers the acyl group from the sn-1 position of phosphatidylcholine to all-trans retinol, producing all-trans retinyl esters (By similarity). Retinyl esters are storage forms of vitamin A (By similarity). LRAT plays a critical role in vision (By similarity). It provides the all-trans retinyl ester substrates for the isomerohydrolase which processes the esters into 11-cis-retinol in the retinal pigment epithelium; due to a membrane-associated alcohol dehydrogenase, 11 cis-retinol is oxidized and converted into 11-cis- retinaldehyde which is the chrom [...]
     
 0.948
Cyp26a1
Cytochrome P450 26A1; A cytochrome P450 monooxygenase involved in the metabolism of all-trans retinoic acid (atRA), a signaling molecule that binds to retinoic acid receptors and regulates gene transcription. Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (CPR; NADPH- ferrihemoprotein reductase). Catalyzes the hydroxylation of carbon hydrogen bonds of atRA primarily at C-4 and C-18. Has no activity toward 9-cis and 13-cis retinoic acid st [...]
    
 0.935
Rdh12
Retinol dehydrogenase 12; Retinoids dehydrogenase/reductase with a clear preference for NADP. Displays high activity towards 9-cis, 11-cis and all-trans- retinal. Shows very weak activity toward 13-cis-retinol. Also exhibits activity, albeit with lower affinity than for retinaldehydes, towards lipid peroxidation products (C9 aldehydes) such as 4-hydroxynonenal and trans-2-nonenal (By similarity). Plays an important function in photoreceptor cells to detoxify 4-hydroxynonenal and potentially other toxic aldehyde products resulting from lipid peroxidation. Has no dehydrogenase activity t [...]
  
 
 0.934
Rdh11
Retinol dehydrogenase 11; Retinol dehydrogenase with a clear preference for NADP. Displays high activity towards 9- cis, 11-cis and all-trans-retinol, and to a lesser extent on 13-cis- retinol (By similarity). Exhibits also reductive activity towards toxic lipid peroxidation products such as medium-chain aldehydes trans-2-nonenal, nonanal, and cis-6-nonenal. Has no dehydrogenase activity towards steroid. Seems to be required for homeostasis of retinol in liver and testis ; Belongs to the short-chain dehydrogenases/reductases (SDR) family.
  
 
 0.933
Dhrs4
Dehydrogenase/reductase SDR family member 4; Reduces all-trans-retinal and 9-cis retinal. Can also catalyze the oxidation of all-trans-retinol with NADP as co-factor, but with much lower efficiency. Reduces alkyl phenyl ketones and alpha- dicarbonyl compounds with aromatic rings, such as pyrimidine-4- aldehyde, 3-benzoylpyridine, 4-benzoylpyridine, menadione and 4- hexanoylpyridine. Has no activity towards aliphatic aldehydes and ketones (By similarity).
  
 
 0.932
Dhrs3
Short-chain dehydrogenase/reductase 3; Catalyzes the reduction of all-trans-retinal to all-trans- retinol in the presence of NADPH.
  
 
 0.932
Hsd17b6
17-beta-hydroxysteroid dehydrogenase type 6; NAD-dependent oxidoreductase with broad substrate specificity that shows both oxidative and reductive activity (in vitro). Has 17- beta-hydroxysteroid dehydrogenase activity towards various steroids (in vitro). Converts 5-alpha-androstan-3-alpha,17-beta-diol to androsterone and estradiol to estrone (in vitro). Has 3-alpha-hydroxysteroid dehydrogenase activity towards androsterone (in vitro). Has retinol dehydrogenase activity towards all-trans-retinol (in vitro).
   
 
 0.930
Adh1
Alcohol dehydrogenase 1; Belongs to the zinc-containing alcohol dehydrogenase family. Class-I subfamily.
  
 
 0.927
Rdh7
Retinol dehydrogenase 7; Acts on androgens and retinols, i.e. has steroid 3-alpha- and 17-beta-dehydrogenase and cis/trans-retinol catalytic activities.
   
 
 0.923
Rdh10
Retinol dehydrogenase 10; Retinol dehydrogenase with a clear preference for NADP. Converts all-trans-retinol to all-trans-retinal. Has no detectable activity towards 11-cis-retinol, 9-cis-retinol and 13-cis-retinol (By similarity). Required for normal embryonic development; Belongs to the short-chain dehydrogenases/reductases (SDR) family.
  
 
 0.921
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: low (30%) [HD]