STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Hoga14-hydroxy-2-oxoglutarate aldolase, mitochondrial; Catalyzes the final step in the metabolic pathway of hydroxyproline. (321 aa)    
Predicted Functional Partners:
Grhpr
Glyoxylate reductase/hydroxypyruvate reductase; Enzyme with hydroxy-pyruvate reductase, glyoxylate reductase and D-glycerate dehydrogenase enzymatic activities. Reduces hydroxypyruvate to D-glycerate, glyoxylate to glycolate oxidizes D- glycerate to hydroxypyruvate (By similarity).
  
 0.981
Agxt
Serine--pyruvate aminotransferase, mitochondrial; Dual metabolic roles of gluconeogenesis (in the mitochondria) and glyoxylate detoxification (in the peroxisomes).
   
 
 0.979
Hao1
Hydroxyacid oxidase 1; Has 2-hydroxyacid oxidase activity. Most active on the 2- carbon substrate glycolate, but is also active on 2-hydroxy fatty acids, with high activity towards 2-hydroxy palmitate and 2-hydroxy octanoate (By similarity); Belongs to the FMN-dependent alpha-hydroxy acid dehydrogenase family.
   
 
 0.959
Hao2
Hydroxyacid oxidase 2; Has 2-hydroxyacid oxidase activity. Most active on medium- chain substrates; Belongs to the FMN-dependent alpha-hydroxy acid dehydrogenase family.
   
 
 0.927
Got2
Aspartate aminotransferase, mitochondrial; Catalyzes the irreversible transamination of the L-tryptophan metabolite L-kynurenine to form kynurenic acid (KA). Plays a key role in amino acid metabolism. Important for metabolite exchange between mitochondria and cytosol. Facilitates cellular uptake of long-chain free fatty acids.
   
 0.918
Got1
Aspartate aminotransferase, cytoplasmic; Biosynthesis of L-glutamate from L-aspartate or L-cysteine. Important regulator of levels of glutamate, the major excitatory neurotransmitter of the vertebrate central nervous system. Acts as a scavenger of glutamate in brain neuroprotection. The aspartate aminotransferase activity is involved in hepatic glucose synthesis during development and in adipocyte glyceroneogenesis. Using L-cysteine as substrate, regulates levels of mercaptopyruvate, an important source of hydrogen sulfide. Mercaptopyruvate is converted into H(2)S via the action of 3-m [...]
   
 0.909
Got1l1
Putative aspartate aminotransferase, cytoplasmic 2; Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family.
   
 0.909
Dao
D-amino-acid oxidase; Regulates the level of the neuromodulator D-serine in the brain. Has high activity towards D-DOPA and contributes to dopamine synthesis. Could act as a detoxifying agent which removes D-amino acids accumulated during aging. Acts on a variety of D-amino acids with a preference for those having small hydrophobic side chains followed by those bearing polar, aromatic, and basic groups. Does not act on acidic amino acids.
   
 
 0.873
Prodh2
Hydroxyproline dehydrogenase; Dehydrogenase that converts trans-4-L-hydroxyproline to delta-1-pyrroline-3-hydroxy-5-carboxylate (Hyp) using ubiquinone-10 as the terminal electron acceptor. Can also use proline as a substrate but with a very much lower efficiency. Does not react with other diastereomers of Hyp: trans-4-D-hydroxyproline and cis-4-L- hydroxyproline. Ubiquininone analogs such as menadione, duroquinone and ubiquinone-1 react more efficiently than oxygen as the terminal electron acceptor during catalysis.
   
  
 0.754
Atp6v1fnb
Protein ATP6V1FNB.
      
 0.667
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: low (38%) [HD]