STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Kcnk3Potassium channel subfamily K member 3; pH-dependent, voltage-insensitive, background potassium channel protein. Rectification direction results from potassium ion concentration on either side of the membrane. Acts as an outward rectifier when external potassium concentration is low. When external potassium concentration is high, current is inward. (409 aa)    
Predicted Functional Partners:
Kcnk9
Potassium channel subfamily K member 9; pH-dependent, voltage-insensitive, background potassium channel protein.
  
 
0.960
Kcnk18
Potassium channel subfamily K member 18; Outward rectifying potassium channel. Produces rapidly activating outward rectifier K(+) currents. May function as background potassium channel that sets the resting membrane potential. Channel activity is directly activated by calcium signal. Activated by the G(q)-protein coupled receptor pathway. The calcium signal robustly activates the channel via calcineurin, whereas the anchoring of 14-3- 3/YWHAH interferes with the return of the current to the resting state after activation. Inhibited also by arachidonic acid and other naturally occurring [...]
   
 
0.807
Kcnk5
Potassium channel, subfamily K, member 5; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family.
   
 
0.805
S100a10
Protein S100-A10; Because S100A10 induces the dimerization of ANXA2/p36, it may function as a regulator of protein phosphorylation in that the ANXA2 monomer is the preferred target (in vitro) of tyrosine-specific kinase; Belongs to the S-100 family.
    
 
 0.796
Kcnk10
Potassium channel, subfamily K, member 10; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family.
   
 
0.782
Kcna5
Potassium voltage-gated channel subfamily A member 5; Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes. Forms tetrameric potassium- selective channels through which potassium ions pass in accordance with their electrochemical gradient. The channel alternates between opened and closed conformations in response to the voltage difference across the membrane. Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCNA1, KCNA2, KCNA4, KCNA5, and possibly other family members as well [...]
   
  
 0.678
Kcnk4
Potassium channel subfamily K member 4; Voltage-insensitive potassium channel. Channel opening is triggered by mechanical forces that deform the membrane. Channel opening is triggered by raising the intracellular pH to basic levels (By similarity). The channel is inactive at 24 degrees Celsius (in vitro); raising the temperature to 37 degrees Celsius increases the frequency of channel opening, with a further increase in channel activity when the temperature is raised to 42 degrees Celsius (By similarity). Plays a role in the sensory perception of pain caused by pressure. Plays a role i [...]
   
 
0.669
Kcnk2
Potassium channel subfamily K member 2; Ion channel that contributes to passive transmembrane potassium transport. Reversibly converts between a voltage-insensitive potassium leak channel and a voltage-dependent outward rectifying potassium channel in a phosphorylation-dependent manner. In astrocytes, forms mostly heterodimeric potassium channels with KCNK1, with only a minor proportion of functional channels containing homodimeric KCNK2. In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled recep [...]
   
 
0.668
Kcnk1
Potassium channel subfamily K member 1; Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues. Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium. The homodimer has very low potassium [...]
   
 
0.659
Kcnk7
Potassium channel subfamily K member 7; Probable potassium channel subunit. No channel activity observed in vitro as protein remains in the endoplasmic reticulum. May need to associate with an as yet unknown partner in order to reach the plasma membrane; Belongs to the two pore domain potassium channel (TC 1.A.1.8) family.
   
 
0.643
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: low (20%) [HD]