STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
Sulf2Extracellular sulfatase Sulf-2; Exhibits arylsulfatase activity and highly specific endoglucosamine-6-sulfatase activity. It can remove sulfate from the C- 6 position of glucosamine within specific subregions of intact heparin (By similarity); Belongs to the sulfatase family. (875 aa)    
Predicted Functional Partners:
Gpc3
Glypican-3 alpha subunit; Cell surface proteoglycan that bears heparan sulfate (By similarity). Negatively regulates the hedgehog signaling pathway when attached via the GPI-anchor to the cell surface by competing with the hedgehog receptor PTC1 for binding to hedgehog proteins. Binding to the hedgehog protein SHH triggers internalization of the complex by endocytosis and its subsequent lysosomal degradation. Positively regulates the canonical Wnt signaling pathway by binding to the Wnt receptor Frizzled and stimulating the binding of the Frizzled receptor to Wnt ligands (By similarity [...]
    
 
 0.775
Hs2st1
Heparan sulfate 2-O-sulfotransferase 1; Catalyzes the transfer of sulfate to the C2-position of selected hexuronic acid residues within the maturing heparan sulfate (HS). 2-O-sulfation within HS, particularly of iduronate residues, is essential for HS to participate in a variety of high-affinity ligand- binding interactions and signaling processes. Required for metanephric development of kidney formation, suggesting that 2-O-sulfation within HS is essential for signaling between ureteric bud and metanephric mesenchyme. Mediates 2-O-sulfation of both L-iduronyl and D-glucuronyl residues [...]
   
  
 0.719
Hs6st1
Heparan-sulfate 6-O-sulfotransferase 1; 6-O-sulfation enzyme which catalyzes the transfer of sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to position 6 of the N-sulfoglucosamine residue (GlcNS) of heparan sulfate. Critical for normal neuronal development where it may play a role in neuron branching. May also play a role in limb development. May prefer iduronic acid.
   
 
 0.676
Ndst1
Bifunctional heparan sulfate N-deacetylase/N-sulfotransferase 1; Essential bifunctional enzyme that catalyzes both the N- deacetylation and the N-sulfation of glucosamine (GlcNAc) of the glycosaminoglycan in heparan sulfate. Modifies the GlcNAc-GlcA disaccharide repeating sugar backbone to make N-sulfated heparosan, a prerequisite substrate for later modifications in heparin biosynthesis. Plays a role in determining the extent and pattern of sulfation of heparan sulfate. Compared to other NDST enzymes, its presence is absolutely required. Participates in biosynthesis of heparan sulfate [...]
   
 
 0.670
Sdc3
Syndecan-3; Cell surface proteoglycan that may bear heparan sulfate. May have a role in the organization of cell shape by affecting the actin cytoskeleton, possibly by transferring signals from the cell surface in a sugar-dependent mechanism (By similarity).
   
  
 0.663
Ext2
Exostosin-2; Glycosyltransferase required for the biosynthesis of heparan- sulfate. The EXT1/EXT2 complex possesses substantially higher glycosyltransferase activity than EXT1 or EXT2 alone. Appears to be a tumor suppressor. Required for the exosomal release of SDCBP, CD63 and syndecan.
   
 
 0.655
Ext1
Exostosin-1; Glycosyltransferase required for the biosynthesis of heparan- sulfate. The EXT1/EXT2 complex possesses substantially higher glycosyltransferase activity than EXT1 or EXT2 alone. Required for the exosomal release of SDCBP, CD63 and syndecan (By similarity).
   
  
 0.643
Hs6st2
Heparan-sulfate 6-O-sulfotransferase 2; 6-O-sulfation enzyme which catalyzes the transfer of sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to position 6 of the N-sulfoglucosamine residue (GlcNS) of heparan sulfate.
    
 
 0.636
Glce
D-glucuronyl C5-epimerase; Converts D-glucuronic acid residues adjacent to N-sulfate sugar residues to L-iduronic acid residues, both in maturing heparan sulfate (HS) and heparin chains. This is important for further modifications that determine the specificity of interactions between these glycosaminoglycans and proteins. Belongs to the D-glucuronyl C5-epimerase family.
      
 0.627
Hs3st1
Heparan sulfate glucosamine 3-O-sulfotransferase 1; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) to catalyze the transfer of a sulfo group to position 3 of glucosamine residues in heparan. Catalyzes the rate limiting step in the biosynthesis of heparan sulfate (HSact). This modification is a crucial step in the biosynthesis of anticoagulant heparan sulfate as it completes the structure of the antithrombin pentasaccharide binding site.
      
 0.603
Your Current Organism:
Mus musculus
NCBI taxonomy Id: 10090
Other names: LK3 transgenic mice, M. musculus, Mus sp. 129SV, house mouse, mouse, nude mice, transgenic mice
Server load: low (36%) [HD]