STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
clpBATP-dependent chaperone protein ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. (856 aa)    
Predicted Functional Partners:
clpP
ATP-dependent Clp protease, proteolytic subunit ClpP; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family.
 
 
 0.977
grpE
Co-chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-depend [...]
  
 
 0.919
DnaJ
DnaJ C-terminal domain protein; An automated process has identified a potential problem with this gene model; the current end5 and/or the end3 may need to extended or the current gene model may need to be merged with a neighboring gene model; the current gene model (or a revised gene model) may contain a frame shift.
  
 
 0.891
hscA
Fe-S protein assembly chaperone HscA; Chaperone involved in the maturation of iron-sulfur cluster- containing proteins. Has a low intrinsic ATPase activity which is markedly stimulated by HscB.
  
 
 0.853
dnaK
Chaperone protein DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family.
  
 
 0.853
EGV06358.1
MreB/Mbl domain protein; An automated process has identified a potential problem with this gene model; the current end5 and/or the end3 may need to extended or the current gene model may need to be merged with a neighboring gene model; the current gene model (or a revised gene model) may contain a frame shift.
  
 
 0.853
DnaK_1
Putative cell division protein FtsA; An automated process has identified a potential problem with this gene model; the current end5 and/or the end3 may need to extended or the current gene model may need to be merged with a neighboring gene model; the current gene model (or a revised gene model) may contain a frame shift.
  
 
 0.853
htpG
Chaperone protein HtpG; Molecular chaperone. Has ATPase activity.
  
 
 0.797
groS
Chaperonin GroS; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter.
  
 
 0.763
lon
Endopeptidase La; ATP-dependent serine protease that mediates the selective degradation of mutant and abnormal proteins as well as certain short- lived regulatory proteins. Required for cellular homeostasis and for survival from DNA damage and developmental changes induced by stress. Degrades polypeptides processively to yield small peptide fragments that are 5 to 10 amino acids long. Binds to DNA in a double-stranded, site-specific manner.
  
 
 0.762
Your Current Organism:
Haemophilus pittmaniae
NCBI taxonomy Id: 1035188
Other names: H. pittmaniae HK 85, Haemophilus pittmaniae CCUG 48703, Haemophilus pittmaniae HK 85, Haemophilus pittmaniae str. HK 85, Haemophilus pittmaniae strain HK 85, Haemophilus sp. HK 85
Server load: low (28%) [HD]