STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
APH00986.1Elongation factor Ts; Derived by automated computational analysis using gene prediction method: Protein Homology. (275 aa)    
Predicted Functional Partners:
tuf
Elongation factor Tu; This protein promotes the GTP-dependent binding of aminoacyl- tRNA to the A-site of ribosomes during protein biosynthesis.
   
 0.999
APH00985.1
30S ribosomal protein S2; Derived by automated computational analysis using gene prediction method: Protein Homology.
 0.999
APH00989.1
Ribosome-recycling factor; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.993
pyrH
Uridylate kinase; Catalyzes the phosphorylation of UMP to UDP; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.983
fusA
Elongation factor G; EF-G; promotes GTP-dependent translocation of the ribosome during translation; many organisms have multiple copies of this gene; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.982
rplS
This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.982
rpsA
30S ribosomal protein S1; In Escherichia coli this protein is involved in binding to the leader sequence of mRNAs and is itself bound to the 30S subunit; autoregulates expression via a C-terminal domain; in most gram negative organisms this protein is composed of 6 repeats of the S1 domain while in gram positive there are 4 repeats; the S1 nucleic acid-binding domain is found associated with other proteins; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.981
rplL
50S ribosomal protein L7; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family.
  
 0.974
rplT
50S ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit.
  
 
 0.973
rpsI
30S ribosomal protein S9; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS9 family.
  
 
 0.970
Your Current Organism:
Janibacter terrae
NCBI taxonomy Id: 103817
Other names: ATCC BAA-130, CCUG 45369, CIP 107018, DSM 13876, DSM 13953 [[Janibacter brevis Imamura et al. 2000]], J. terrae, JCM 10705, JCM 12887 [[Janibacter brevis Imamura et al. 2000]], Janibacter brevis, Janibacter brevis Imamura et al. 2000, Janibacter terrae Yoon et al. 2000 emend. Lang et al. 2003, KCCM 80001, KCTC 19953, NBRC 107853, strain 10N [[Janibacter brevis Imamura et al. 2000]], strain CS12
Server load: low (22%) [HD]