STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
APH01428.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (160 aa)    
Predicted Functional Partners:
uvrB
Excinuclease ABC subunit B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate [...]
 
 
 0.998
APH03182.1
Transcription-repair coupling factor; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.968
uvrC
Excinuclease ABC subunit C; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5' and 3' sides of the lesion. The N-terminal half is responsible for the 3' incision and the C-terminal half is responsible for the 5' incision.
 
 
 0.831
APH01256.1
Endonuclease; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.595
APH02124.1
ATP-dependent DNA helicase PcrA; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.589
APH00742.1
ATP-dependent DNA helicase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.573
APH01427.1
Methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
    0.541
APH01577.1
Glutamate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.522
recR
Recombination protein RecR; May play a role in DNA repair. It seems to be involved in an RecBC-independent recombinational process of DNA repair. It may act with RecF and RecO.
  
   
 0.484
APH01816.1
DNA recombination/repair protein RecA; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.483
Your Current Organism:
Janibacter terrae
NCBI taxonomy Id: 103817
Other names: ATCC BAA-130, CCUG 45369, CIP 107018, DSM 13876, DSM 13953 [[Janibacter brevis Imamura et al. 2000]], J. terrae, JCM 10705, JCM 12887 [[Janibacter brevis Imamura et al. 2000]], Janibacter brevis, Janibacter brevis Imamura et al. 2000, Janibacter terrae Yoon et al. 2000 emend. Lang et al. 2003, KCCM 80001, KCTC 19953, NBRC 107853, strain 10N [[Janibacter brevis Imamura et al. 2000]], strain CS12
Server load: low (10%) [HD]