STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
metE5-methyltetrahydropteroyltriglutamate-- homocysteine methyltransferase; Catalyzes the formation of tetrahydropteroyl-L-glutamate and methionine from L-homocysteine and 5-methyltetrahydropteroyltri-L-glutamate; Derived by automated computational analysis using gene prediction method: Protein Homology. (342 aa)    
Predicted Functional Partners:
metK2
S-adenosylmethionine synthetase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme.
  
 0.976
ahcY
Adenosylhomocysteinase; May play a key role in the regulation of the intracellular concentration of adenosylhomocysteine.
  
 
 0.964
KXV62740.1
Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate.
  
 
 0.963
KXV65003.1
Methylenetetrahydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the methylenetetrahydrofolate reductase family.
  
 0.946
KXV66709.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
    0.933
metZ
O-succinylhomoserine sulfhydrylase; Catalyzes the formation of L-homocysteine from O-succinyl-L- homoserine (OSHS) and hydrogen sulfide.
  
 
 0.926
KXV63092.1
Cystathionine beta-lyase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.926
gcvP
Glycine dehydrogenase; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family.
  
 
 0.909
KXV62527.1
Homoserine dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.909
cysK
Cysteine synthase; CysK; forms a complex with serine acetyltransferase CysE; functions in cysteine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.874
Your Current Organism:
Acetobacter orleanensis
NCBI taxonomy Id: 104099
Other names: A. orleanensis, ATCC 12876, Acetobacter aceti subsp. orleanensis, Acetobacter mesoxydans, Acetobacter orleanense, Bacillus orleanensis, Bacterium dihydroxyacetonicum, Bacterium orleanense, CCUG 18126, DSM 4492, IFO 13752, JCM 7639, NBRC 13752, NCCB 31003, NCIMB 8622, Ulvina orleanense
Server load: low (18%) [HD]