STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
mrsAMrsA protein; Catalyzes the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate; Belongs to the phosphohexose mutase family. (444 aa)    
Predicted Functional Partners:
glmU
UDP-N-acetylglucosamine pyrophosphorylase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain. In the C-terminal section; belongs to the transferase hexapeptide repeat family.
 
 
 0.967
glmS
D-fructose-6-phosphate amidotransferase; Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source.
 
 
 0.958
hflB
Cell division protein FtsH; Acts as a processive, ATP-dependent zinc metallopeptidase for both cytoplasmic and membrane proteins. Plays a role in the quality control of integral membrane proteins; In the central section; belongs to the AAA ATPase family.
  
  
 0.737
murC
UDP-N-acetylmuramate-alanine ligase; Cell wall formation; Belongs to the MurCDEF family.
  
 
 
 0.688
hisB
Imidazole glycerol-phosphate dehydratase/histidinol phosphatase; Histidinol-phosphate phosphatase; In the C-terminal section; belongs to the imidazoleglycerol-phosphate dehydratase family.
     
 0.665
rplI
50S ribosomal protein L9; Binds to the 23S rRNA.
 
 
 
 0.607
pta
Phosphate acetyltransferase; Involved in acetate metabolism; In the N-terminal section; belongs to the CobB/CobQ family.
      
 0.563
murA
UDP-N-acetylglucosamine 1-carboxyvinyltransferase; Cell wall formation. Adds enolpyruvyl to UDP-N- acetylglucosamine; Belongs to the EPSP synthase family. MurA subfamily.
  
  
 0.559
tpiA
Triosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family.
   
 
 0.556
ptsG
PTS system glucose-specific IIBC component; The phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS), a major carbohydrate active transport system, catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The enzyme II complex composed of PtsG and Crr is involved in glucose transport.
      
 0.555
Your Current Organism:
Buchnera aphidicola 5A
NCBI taxonomy Id: 563178
Other names: B. aphidicola str. 5A (Acyrthosiphon pisum), Buchnera aphidicola str. 5A (Acyrthosiphon pisum), Buchnera aphidicola strain 5A (Acyrthosiphon pisum)
Server load: low (8%) [HD]