STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ANT50367.1Aldolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (266 aa)    
Predicted Functional Partners:
tal
Fructose-6-phosphate aldolase; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway; Belongs to the transaldolase family. Type 3B subfamily.
  
 
 0.949
ANT48689.1
Transketolase; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate.
  
 
 0.948
ANT52813.1
Aldolase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 
0.927
gapA
Erythrose-4-phosphate dehydrogenase; Required for glycolysis; catalyzes the formation of 3-phospho-D-glyceroyl phosphate from D-glyceraldehyde 3-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family.
    
 0.924
pfp
6-phosphofructokinase; Catalyzes the phosphorylation of D-fructose 6-phosphate, the first committing step of glycolysis. Uses inorganic phosphate (PPi) as phosphoryl donor instead of ATP like common ATP-dependent phosphofructokinases (ATP-PFKs), which renders the reaction reversible, and can thus function both in glycolysis and gluconeogenesis. Consistently, PPi-PFK can replace the enzymes of both the forward (ATP- PFK) and reverse (fructose-bisphosphatase (FBPase)) reactions.
    
 0.924
ANT50402.1
Fructose-1,6-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis.
    
 0.921
tpiA-2
Triose-phosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family.
  
 
 0.919
glpX
Type II fructose 1,6-bisphosphatae; in Escherichia coli this protein forms a dimer and binds manganese; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.913
ANT49565.1
2-deoxyribose-5-phosphate aldolase; Catalyzes a reversible aldol reaction between acetaldehyde and D-glyceraldehyde 3-phosphate to generate 2-deoxy-D-ribose 5- phosphate.
    
 0.909
ANT53013.1
Fuculose phosphate aldolase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.909
Your Current Organism:
Mesorhizobium amorphae
NCBI taxonomy Id: 1082933
Other names: M. amorphae CCNWGS0123, Mesorhizobium amorphae CCNWGS0123, Mesorhizobium amorphae str. CCNWGS0123, Mesorhizobium amorphae strain CCNWGS0123
Server load: low (20%) [HD]