STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
coaAType I pantothenate kinase; Derived by automated computational analysis using gene prediction method: Protein Homology. (304 aa)    
Predicted Functional Partners:
coaBC
DNA/pantothenate metabolism flavoprotein; Catalyzes two steps in the biosynthesis of coenzyme A. In the first step cysteine is conjugated to 4'-phosphopantothenate to form 4- phosphopantothenoylcysteine, in the latter compound is decarboxylated to form 4'-phosphopantotheine; In the C-terminal section; belongs to the PPC synthetase family.
  
 
 0.932
coaD
Pantetheine-phosphate adenylyltransferase; Reversibly transfers an adenylyl group from ATP to 4'- phosphopantetheine, yielding dephospho-CoA (dPCoA) and pyrophosphate. Belongs to the bacterial CoaD family.
     
 0.929
APT15238.1
Two-component sensor histidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.573
APT15239.1
DNA-binding response regulator; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.573
efp-2
Elongation factor P; Involved in peptide bond synthesis. Stimulates efficient translation and peptide-bond synthesis on native or reconstituted 70S ribosomes in vitro. Probably functions indirectly by altering the affinity of the ribosome for aminoacyl-tRNA, thus increasing their reactivity as acceptors for peptidyl transferase.
  
    0.548
Your Current Organism:
Lactobacillus jensenii
NCBI taxonomy Id: 109790
Other names: ATCC 25258, CCUG 21961, CCUG 35572, CIP 69.17, DSM 20557, JCM 15953, L. jensenii, LMG 6414, LMG:6414, NRRL B-4550
Server load: low (16%) [HD]