STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
glnDBifunctional uridylyltransferase/uridylyl-removing protein; Modifies, by uridylylation and deuridylylation, the PII regulatory proteins (GlnB and homologs), in response to the nitrogen status of the cell that GlnD senses through the glutamine level. Under low glutamine levels, catalyzes the conversion of the PII proteins and UTP to PII-UMP and PPi, while under higher glutamine levels, GlnD hydrolyzes PII-UMP to PII and UMP (deuridylylation). Thus, controls uridylylation state and activity of the PII proteins, and plays an important role in the regulation of nitrogen metabolism. (889 aa)    
Predicted Functional Partners:
glnB
Transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the P(II) protein family.
 
 
 0.922
glnK
Transcriptional regulator; Indirectly regulates nitrogen metabolism; at high nitrogen levels P-II prevents the phosphorylation of NR-I, the transcriptional activator of the glutamine synthetase gene (glnA); at low nitrogen levels P-II is uridylylated to form PII-UMP and interacts with an adenylyltransferase (GlnE) that activates GlnA; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.885
glnE
Glutamine-synthetase adenylyltransferase; Involved in the regulation of glutamine synthetase GlnA, a key enzyme in the process to assimilate ammonia. When cellular nitrogen levels are high, the C-terminal adenylyl transferase (AT) inactivates GlnA by covalent transfer of an adenylyl group from ATP to specific tyrosine residue of GlnA, thus reducing its activity. Conversely, when nitrogen levels are low, the N-terminal adenylyl removase (AR) activates GlnA by removing the adenylyl group by phosphorolysis, increasing its activity. The regulatory region of GlnE binds the signal transducti [...]
 
   
 0.750
map
Type I methionyl aminopeptidase; Removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). Requires deformylation of the N(alpha)-formylated initiator methionine before it can be hydrolyzed; Belongs to the peptidase M24A family. Methionine aminopeptidase type 1 subfamily.
  
    0.666
OBS31111.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 0.663
OBS30786.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.659
OBS30417.1
PAS domain-containing sensor histidine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 
 0.642
bamA
Outer membrane protein assembly factor BamA; Part of the outer membrane protein assembly complex, which is involved in assembly and insertion of beta-barrel proteins into the outer membrane.
 
    0.599
OBS32112.1
Glutamate synthase subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.566
cca
2',3'-cyclic phosphodiesterase; Catalyzes the addition and repair of the essential 3'- terminal CCA sequence in tRNAs without using a nucleic acid template. Adds these three nucleotides in the order of C, C, and A to the tRNA nucleotide-73, using CTP and ATP as substrates and producing inorganic pyrophosphate. Also shows phosphatase, 2'-nucleotidase and 2',3'-cyclic phosphodiesterase activities. These phosphohydrolase activities are probably involved in the repair of the tRNA 3'-CCA terminus degraded by intracellular RNases.
 
  
  0.551
Your Current Organism:
Tepidimonas fonticaldi
NCBI taxonomy Id: 1101373
Other names: BCRC 80391, KCTC 23862, LMG 26746, LMG:26746, T. fonticaldi, Tepidimonas fonticaldi Chen et al. 2013, Tepidimonas sp. AT-A2, Tepidimonas sp. PL17, strain AT-A2
Server load: low (14%) [HD]