STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CG50_10965RNA polymerase sigma 70; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the sigma-70 factor family. (292 aa)    
Predicted Functional Partners:
rpoC
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
 
 
 0.969
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
 
 
 0.959
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
 
 
 0.947
rpoZ
DNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits.
 
 
 
 0.933
dnaJ
Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...]
  
 
 0.922
CG50_08030
CarD family transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.915
CG50_08620
6-O-methylguanine DNA methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.907
CG50_12950
MerR family transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.901
CG50_13845
GcrA cell cycle regulator; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 
 0.897
CG50_00920
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 
 0.894
Your Current Organism:
Paenirhodobacter enshiensis
NCBI taxonomy Id: 1105367
Other names: CCTCC AB 2011145, KCTC 15169, P. enshiensis, Paenirhodobacter enshiensis Wang et al. 2014, Rhodobacter sp. DW2-9, strain DW2-9
Server load: low (10%) [HD]