STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
H257_14770Vacuolar proton pump subunit B; Non-catalytic subunit of the peripheral V1 complex of vacuolar ATPase; Belongs to the ATPase alpha/beta chains family. (513 aa)    
Predicted Functional Partners:
H257_17225
V-type ATPase, A subunit.
 
0.999
H257_17085
V-type proton ATPase subunit a; Essential component of the vacuolar proton pump (V-ATPase), a multimeric enzyme that catalyzes the translocation of protons across the membranes. Required for assembly and activity of the V-ATPase.
 
 0.999
H257_13146
V-type proton ATPase subunit H; Subunit of the peripheral V1 complex of vacuolar ATPase. Subunit H activates ATPase activity of the enzyme and couples ATPase activity to proton flow. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system.
   
 0.999
H257_10372
V-type proton ATPase proteolipid subunit; Proton-conducting pore forming subunit of the membrane integral V0 complex of vacuolar ATPase. V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells.
  
 0.999
H257_07984
Uncharacterized protein.
 
 0.999
H257_07018
Uncharacterized protein.
  
 0.999
B5M09_008772
V-type ATPase, F subunit.
  
 0.999
H257_04657
V-type ATPase, C subunit; Belongs to the V-ATPase proteolipid subunit family.
  
 0.999
B5M09_003554
V-type proton ATPase subunit; Subunit of the integral membrane V0 complex of vacuolar ATPase. Vacuolar ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells, thus providing most of the energy required for transport processes in the vacuolar system. Belongs to the V-ATPase V0D/AC39 subunit family.
  
 0.999
H257_15197
V-type proton ATPase subunit G; Catalytic subunit of the peripheral V1 complex of vacuolar ATPase (V-ATPase). V-ATPase is responsible for acidifying a variety of intracellular compartments in eukaryotic cells.
   
 0.998
Your Current Organism:
Aphanomyces astaci
NCBI taxonomy Id: 112090
Other names: A. astaci
Server load: low (22%) [HD]