STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KFL36435.1N5-glutamine S-adenosyl-L-methionine-dependent methyltransferase; Involved in methylation of ribosomal protein L3; Derived by automated computational analysis using gene prediction method: GeneMarkS+; Belongs to the protein N5-glutamine methyltransferase family. (306 aa)    
Predicted Functional Partners:
prfA
Peptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA.
 
 0.964
aroC
Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system.
 
  
 0.916
atpE
F0F1 ATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
 
   0.691
atpH
Hypothetical protein; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
  
   0.637
psd
Hypothetical protein; Catalyzes the formation of phosphatidylethanolamine (PtdEtn) from phosphatidylserine (PtdSer).
       0.605
asd
Semialdehyde dehydrogenase; Catalyzes the NADPH-dependent formation of L-aspartate- semialdehyde (L-ASA) by the reductive dephosphorylation of L-aspartyl- 4-phosphate; Belongs to the aspartate-semialdehyde dehydrogenase family.
       0.605
atpG
F0F1 ATP synthase subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex.
  
   0.601
atpA
F0F1 ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit.
  
   0.601
KFL36434.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
       0.582
bpt
Hypothetical protein; Functions in the N-end rule pathway of protein degradation where it conjugates Leu from its aminoacyl-tRNA to the N-termini of proteins containing an N-terminal aspartate or glutamate. Belongs to the R-transferase family. Bpt subfamily.
   
   0.577
Your Current Organism:
Arenimonas donghaensis
NCBI taxonomy Id: 1121014
Other names: A. donghaensis DSM 18148 = HO3-R19, Arenimonas donghaensis DSM 18148, Arenimonas donghaensis DSM 18148 = HO3-R19, Arenimonas donghaensis HO3-R19
Server load: low (24%) [HD]