STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
GLIP_0027Hypothetical protein; Could be involved in insertion of integral membrane proteins into the membrane; Belongs to the UPF0161 family. (84 aa)    
Predicted Functional Partners:
rnpA
Ribonuclease P protein component; RNaseP catalyzes the removal of the 5'-leader sequence from pre-tRNA to produce the mature 5'-terminus. It can also cleave other RNA substrates such as 4.5S RNA. The protein component plays an auxiliary but essential role in vivo by binding to the 5'-leader sequence and broadening the substrate specificity of the ribozyme.
  
  
 0.976
oxaA
Inner membrane protein oxaA; Required for the insertion and/or proper folding and/or complex formation of integral membrane proteins into the membrane. Involved in integration of membrane proteins that insert both dependently and independently of the Sec translocase complex, as well as at least some lipoproteins. Aids folding of multispanning membrane proteins.
  
  
 0.899
rpmH
Large subunit ribosomal protein L34; Belongs to the bacterial ribosomal protein bL34 family.
  
  
 0.886
secE
Preprotein translocase subunit SecE; Essential subunit of the Sec protein translocation channel SecYEG. Clamps together the 2 halves of SecY. May contact the channel plug during translocation; Belongs to the SecE/SEC61-gamma family.
   
 
  0.799
serS
seryl-tRNA synthetase; Catalyzes the attachment of serine to tRNA(Ser). Is also able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L- seryl-tRNA(Sec), which will be further converted into selenocysteinyl- tRNA(Sec).
  
    0.715
rho
Transcription termination factor Rho; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template.
  
    0.656
rsmJ
Hypothetical protein; Specifically methylates the guanosine in position 1516 of 16S rRNA.
  
    0.612
rsmD
16S rRNA (guanine966-N2)-methyltransferase; Specifically methylates the guanine in position 966 of 16S rRNA in the assembled 30S particle; Belongs to the methyltransferase superfamily. RsmD family.
  
    0.612
rplB
Large subunit ribosomal protein L2; One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome. Belongs to the universal ribosomal protein uL2 family.
   
    0.610
rpmF
Large subunit ribosomal protein L32; Belongs to the bacterial ribosomal protein bL32 family.
   
  
 0.608
Your Current Organism:
Aliiglaciecola lipolytica
NCBI taxonomy Id: 1127673
Other names: A. lipolytica E3, Aliiglaciecola lipolytica E3, Glaciecola lipolytica E3, marine bacterium E3
Server load: low (14%) [HD]