STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AJT50482.1Dienelactone hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (443 aa)    
Predicted Functional Partners:
pdhA
Pyruvate dehydrogenase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). It contains multiple copies of three enzymatic components: pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2) and lipoamide dehydrogenase (E3).
 
 0.999
AJT50481.1
2-oxoisovalerate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 0.999
AJT50483.1
Dihydrolipoamide dehydrogenase; E3 component of pyruvate complex; catalyzes the oxidation of dihydrolipoamide to lipoamide; Derived by automated computational analysis using gene prediction method: Protein Homology.
 0.999
AJT50484.1
Lipoate--protein ligase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.986
AJT50503.1
Pyridine nucleotide-disulfide oxidoreductase; Involved in disulfide oxidoreductase activity and electron transport; Derived by automated computational analysis using gene prediction method: Protein Homology.
 0.979
AJT51177.1
Acetaldehyde dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; In the C-terminal section; belongs to the iron-containing alcohol dehydrogenase family.
  
 0.950
AJT51095.1
Phosphate acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.942
AJT50435.1
acetyl-CoA carboxylase; An AccC homodimer forms the biotin carboxylase subunit of the acetyl CoA carboxylase, an enzyme that catalyzes the formation of malonyl-CoA, which in turn controls the rate of fatty acid metabolism; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.926
AJT51149.1
acetyl-CoA carboxylase; This protein is a component of the acetyl coenzyme A carboxylase complex; first, biotin carboxylase catalyzes the carboxylation of the carrier protein and then the transcarboxylase transfers the carboxyl group to form malonyl-CoA.
  
 0.926
AJT50836.1
acetyl-CoA acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family.
  
 
 0.924
Your Current Organism:
Lactobacillus mucosae
NCBI taxonomy Id: 1130798
Other names: L. mucosae LM1, Lactobacillus mucosae LM1, Lactobacillus mucosae str. LM1, Lactobacillus mucosae strain LM1
Server load: low (28%) [HD]