STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AQW22374.1ATP-dependent chaperone ClpB; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ClpA/ClpB family. (864 aa)    
Predicted Functional Partners:
dnaK
Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family.
  
 
 0.939
clpP
ATP-dependent Clp protease proteolytic subunit; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family.
  
 
 0.892
AQW22142.1
Nucleotide exchange factor GrpE; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.795
dnaJ
Chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, DnaK and [...]
  
 
 0.759
hrcA
Heat-inducible transcription repressor HrcA; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons.
 
  
 0.730
groL
Molecular chaperone GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.
  
 
 0.712
groS
Co-chaperone GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter.
  
 
 0.693
mecA
Adaptor protein MecA; Enables the recognition and targeting of unfolded and aggregated proteins to the ClpC protease or to other proteins involved in proteolysis.
    
 
 0.666
clpX
ATP-dependent Clp protease ATP-binding subunit ClpX; ATP-dependent specificity component of the Clp protease. It directs the protease to specific substrates. Can perform chaperone functions in the absence of ClpP.
  
 
 0.643
AQW22110.1
Peptidase T; Cleaves the N-terminal amino acid of tripeptides. Belongs to the peptidase M20B family.
  
  
 0.590
Your Current Organism:
Lactobacillus curieae
NCBI taxonomy Id: 1138822
Other names: CCTCC M 2011381, JCM 18524, L. curieae, Lactobacillus curieae Lei et al. 2013, Lactobacillus sp. CCTCC M 2011381, strain S1L19
Server load: low (22%) [HD]