STRINGSTRING
bchE protein (Synechocystis sp. PCC6803) - STRING interaction network
"bchE" - Mg-protoporphyrin IX monomethyl ester oxidative cyclase in Synechocystis sp. PCC6803
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
bchEMg-protoporphyrin IX monomethyl ester oxidative cyclase; Catalyzes the formation of the isocyclic ring in chlorophyll biosynthesis in anaerobic conditions. Mediates the cyclase reaction, which results in the formation of divinylprotochlorophyllide (Pchlide) characteristic of all chlorophylls from magnesium-protoporphyrin IX 13-monomethyl ester (MgPMME) (499 aa)    
Predicted Functional Partners:
chlM
Mg-protoporphyrin IX methyl transferase; Converts Mg-protoporphyrin IX to Mg-protoporphyrin IX methylester using S-adenosyl-L-methionine as a cofactor (230 aa)
 
   
  0.990
acsF2
Magnesium-protoporphyrin IX monomethyl ester cyclase AT103; Catalyzes the formation of the isocyclic ring in chlorophyll biosynthesis. Mediates the cyclase reaction, which results in the formation of divinylprotochlorophyllide (Pchlide) characteristic of all chlorophylls from magnesium-protoporphyrin IX 13-monomethyl ester (MgPMME) (358 aa)
   
   
  0.988
acsF1
Magnesium-protoporphyrin IX monomethyl ester cyclase; Catalyzes the formation of the isocyclic ring in chlorophyll biosynthesis. Mediates the cyclase reaction, which results in the formation of divinylprotochlorophyllide (Pchlide) characteristic of all chlorophylls from magnesium-protoporphyrin IX 13-monomethyl ester (MgPMME) (358 aa)
   
   
  0.975
por
Protochlorophyllide oxido-reductase; Phototransformation of protochlorophyllide (Pchlide) to chlorophyllide (Chlide) (322 aa)
       
  0.900
hemE
Uroporphyrinogen decarboxylase; Catalyzes the decarboxylation of four acetate groups of uroporphyrinogen-III to yield coproporphyrinogen-III (350 aa)
         
  0.772
slr0904
Hypothetical protein (509 aa)
         
  0.771
rne
Ribonuclease E (674 aa)
       
    0.646
chlD
Mg chelatase subunit; Involved in chlorophyll biosynthesis; introduces a magnesium ion into protoporphyrin IX to yield Mg-protoporphyrin IX (676 aa)
         
  0.581
chlB
Protochlorophyllide reductase ChlB subunit; Component of the dark-operative protochlorophyllide reductase (DPOR) that uses Mg-ATP and reduced ferredoxin to reduce ring D of protochlorophyllide (Pchlide) to form chlorophyllide a (Chlide). This reaction is light-independent. The NB-protein (ChlN-ChlB) is the catalytic component of the complex (508 aa)
   
     
  0.551
chlN
Protochlorophyllide reductase subunit ChlN; Component of the dark-operative protochlorophyllide reductase (DPOR) that uses Mg-ATP and reduced ferredoxin to reduce ring D of protochlorophyllide (Pchlide) to form chlorophyllide a (Chlide). This reaction is light-independent. The NB-protein (ChlN-ChlB) is the catalytic component of the complex (469 aa)
   
     
  0.545
Your Current Organism:
Synechocystis sp. PCC6803
NCBI taxonomy Id: 1148
Other names: Aphanocapsa sp. (strain N-1), Aphanocapsa sp. N-1, S. sp. PCC 6803, Synechocystis, Synechocystis PCC6803, Synechocystis sp. (ATCC 27184), Synechocystis sp. (PCC 6803), Synechocystis sp. (strain PCC 6803), Synechocystis sp. ATCC 27184, Synechocystis sp. PCC 6803, Synechocystis sp. PCC 6803 A, Synechocystis sp. PCC 6803 B, Synechocystis sp. PCC6803
Server load: low (8%) [HD]