STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
atpBF0F1-type ATP synthase, alpha subunit; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family. (252 aa)    
Predicted Functional Partners:
atpE
ATP synthase, F0 subunit c; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
 
 0.999
atpG
F0F1-type ATP synthase, beta subunit; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0). The b'-subunit is a diverged and duplicated form of b found in plants and photosynthetic bacteria. Belongs to the ATPase B chain family.
 
 0.999
atpF
F0F1-type ATP synthase, beta subunit; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family.
 
 0.999
atpH
ATP synthase, F1 delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
 
 0.999
atpA
Proton translocating ATP synthase, F1 alpha subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit.
 
 0.999
atpG-2
ATP synthase, F1 gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex.
 
 0.999
atpD
ATP synthase, F1 beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits.
 
 0.999
atpC
ATP synthase, F1 epsilon subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane.
 
 0.999
AFY95766.1
Heme/copper-type cytochrome/quinol oxidase, subunit 3; PFAM: Cytochrome c oxidase subunit III.
   
 
 0.999
AFY94667.1
PFAM: WbqC-like protein family.
  
 0.994
Your Current Organism:
Chamaesiphon minutus
NCBI taxonomy Id: 1173020
Other names: C. minutus PCC 6605, Chamaesiphon minutus PCC 6605, Chamaesiphon sp. ACMM 446, Chamaesiphon sp. ATCC 27169, Chamaesiphon sp. PCC 6605
Server load: low (22%) [HD]